Hi-C Data Resolution Improvement Method based on Ensemble Learning

Zhaoheng Ai, Hao Wu
{"title":"Hi-C Data Resolution Improvement Method based on Ensemble Learning","authors":"Zhaoheng Ai, Hao Wu","doi":"10.1109/ICAIS56108.2023.10073678","DOIUrl":null,"url":null,"abstract":"The multi-level spatial structure of chromosomes allows remote regulatory elements in the linear coordinate space to closely regulate the expression level of the target genes in the three-dimensional structural space, so, the efficient analysis will be essential. Especially, this paper focuses on the Hi-C data resolution improvement method based on ensemble learning. Hi-C data standardization is used to remove the systematic bias between samples introduced by the various unavoidable nonrandom factors, hence, the accuracy is essential. Therefore, this study utilizes the stacking integration model to achieve the ensemble task, the designed model can avoid the problems of low prediction accuracy and the poor model robustness. Similarly, the multi-objective regression evolved based on the idea of multi-label classification. After testing the designed model on the public data sets, the accuracy can reach more than 99%. Compared with the traditional tools, our designed algorithm reaches better results.","PeriodicalId":164345,"journal":{"name":"2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Third International Conference on Artificial Intelligence and Smart Energy (ICAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIS56108.2023.10073678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The multi-level spatial structure of chromosomes allows remote regulatory elements in the linear coordinate space to closely regulate the expression level of the target genes in the three-dimensional structural space, so, the efficient analysis will be essential. Especially, this paper focuses on the Hi-C data resolution improvement method based on ensemble learning. Hi-C data standardization is used to remove the systematic bias between samples introduced by the various unavoidable nonrandom factors, hence, the accuracy is essential. Therefore, this study utilizes the stacking integration model to achieve the ensemble task, the designed model can avoid the problems of low prediction accuracy and the poor model robustness. Similarly, the multi-objective regression evolved based on the idea of multi-label classification. After testing the designed model on the public data sets, the accuracy can reach more than 99%. Compared with the traditional tools, our designed algorithm reaches better results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成学习的Hi-C数据分辨率改进方法
染色体的多层次空间结构使得线性坐标空间中的远程调控元件能够在三维结构空间中紧密调控靶基因的表达水平,因此,高效的分析将是必不可少的。重点研究了基于集成学习的Hi-C数据分辨率改进方法。Hi-C数据标准化用于消除各种不可避免的非随机因素带来的样本间系统性偏差,因此准确性至关重要。因此,本研究利用叠加积分模型来实现集成任务,设计的模型可以避免预测精度低和模型鲁棒性差的问题。同样,多目标回归也是在多标签分类思想的基础上发展起来的。在公共数据集上对所设计的模型进行了测试,准确率达到99%以上。与传统工具相比,我们设计的算法达到了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heuristics based Segmentation of Left Ventricle in Cardiac MR Images Hybrid CNNLBP using Facial Emotion Recognition based on Deep Learning Approach ANN Based Static Var Compensator For Improved Power System Security Photovoltaic System based Interleaved Converter for Grid System Effective Location-based Recommendation Systems for Holiday using RBM Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1