Optimization Welding Process Parameters through Response Surface, Neural Network and Genetic Algorithms

R.J. Praga-Alejo, L.M. Torres-Trevio, M.R. Pia-Monarrez
{"title":"Optimization Welding Process Parameters through Response Surface, Neural Network and Genetic Algorithms","authors":"R.J. Praga-Alejo, L.M. Torres-Trevio, M.R. Pia-Monarrez","doi":"10.1109/CERMA.2008.70","DOIUrl":null,"url":null,"abstract":"Since the Neural Network (NN) with a Genetic Algorithm (GA) as a complement; are good optimization tools, we compare its performance with the Response Surface Methodology (RSM) that is generally used in the optimization of the process, in this case welding process. For the data used in the comparison, the results show that NN plus GA and RSM have a good results and very well performance, for identify the optimal set of parameters to obtain amaximum response of the process.","PeriodicalId":126172,"journal":{"name":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Electronics, Robotics and Automotive Mechanics Conference (CERMA '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2008.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Since the Neural Network (NN) with a Genetic Algorithm (GA) as a complement; are good optimization tools, we compare its performance with the Response Surface Methodology (RSM) that is generally used in the optimization of the process, in this case welding process. For the data used in the comparison, the results show that NN plus GA and RSM have a good results and very well performance, for identify the optimal set of parameters to obtain amaximum response of the process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用响应面、神经网络和遗传算法对焊接工艺参数进行优化
由于神经网络(NN)以遗传算法(GA)为补充;是很好的优化工具,我们将其性能与通常用于工艺优化的响应面法(RSM)进行了比较,以焊接工艺为例。对于所使用的数据进行比较,结果表明,NN + GA和RSM具有很好的效果和很好的性能,对于识别最优的参数集以获得最大的过程响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling a Vehicle Using Bond Graphs The Laplacian Artificial Potential Field (LAPF) for the Path Planning of Robotic Manipulators Cooperative Adaptive Behavior Acquisition in Mobile Robot Swarms Using Neural Networks and Genetic Algorithms Design and Construction of an EEG Data Acquisition System for Measurement of Auditory Evoked Potentials Proposal for a Remote Surgery System Based on Wireless Communications, Electromyography and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1