{"title":"A Wavelet-Based Descriptor for Handwritten Numeral Classification","authors":"L. Seijas, E. Segura","doi":"10.1109/ICFHR.2012.174","DOIUrl":null,"url":null,"abstract":"In this work we propose descriptors for handwritten digit recognition based on multiresolution features by using the CDF 9/7 Wavelet Transform and Principal Component Analysis, in order to improve the classification performance and obtain a strong reduction on the size of the digit representation. This allows for a higher precision in the recognizers and, at the same time, lower training costs, especially for large datasets. Experiments were carried out with the CENPARMI and MNIST databases, widely used in the literature for this kind of problems, combining classifiers of the Support Vector Machine type. The recognition rates are good, comparable to those reported in previous works.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this work we propose descriptors for handwritten digit recognition based on multiresolution features by using the CDF 9/7 Wavelet Transform and Principal Component Analysis, in order to improve the classification performance and obtain a strong reduction on the size of the digit representation. This allows for a higher precision in the recognizers and, at the same time, lower training costs, especially for large datasets. Experiments were carried out with the CENPARMI and MNIST databases, widely used in the literature for this kind of problems, combining classifiers of the Support Vector Machine type. The recognition rates are good, comparable to those reported in previous works.