Computational advances in sparse L1-norm principal-component analysis of multi-dimensional data

Shubham Chamadia, D. Pados
{"title":"Computational advances in sparse L1-norm principal-component analysis of multi-dimensional data","authors":"Shubham Chamadia, D. Pados","doi":"10.1109/CAMSAP.2017.8313159","DOIUrl":null,"url":null,"abstract":"We consider the problem of extracting a sparse Li-norm principal component from a data matrix X ∊ R<sup>D×N</sup> of N observation vectors of dimension D. Recently, an optimal algorithm was presented in the literature for the computation of sparse L<inf>1</inf>-norm principal components with complexity O(N<sup>S</sup>) where S is the desired sparsity. In this paper, we present an efficient suboptimal algorithm of complexity O(N<sup>2</sup>(N + D)). Extensive numerical studies demonstrate the near-optimal performance of the proposed algorithm and its strong resistance to faulty measurements/outliers in the data matrix.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of extracting a sparse Li-norm principal component from a data matrix X ∊ RD×N of N observation vectors of dimension D. Recently, an optimal algorithm was presented in the literature for the computation of sparse L1-norm principal components with complexity O(NS) where S is the desired sparsity. In this paper, we present an efficient suboptimal algorithm of complexity O(N2(N + D)). Extensive numerical studies demonstrate the near-optimal performance of the proposed algorithm and its strong resistance to faulty measurements/outliers in the data matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维数据稀疏l1范数主成分分析的计算进展
研究了从d维N个观测向量的数据矩阵X RD×N中提取稀疏li -范数主成分的问题。最近,文献中提出了一种计算复杂度为0 (NS)的稀疏l1 -范数主成分的最优算法,其中S为期望稀疏度。本文提出了一种复杂度为O(N2(N + D))的次优算法。大量的数值研究表明,所提出的算法具有接近最优的性能,并且对数据矩阵中的错误测量/异常值具有很强的抵抗力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved DOA estimators using partial relaxation approach Energy efficient transmission in MIMO interference channels with QoS constraints Restricted update sequential matrix diagonalisation for parahermitian matrices Sparse Bayesian learning with dictionary refinement for super-resolution through time L1-PCA signal subspace identification for non-sphered data under the ICA model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1