Policy Reuse in Reinforcement Learning for Modular Agents

Sayyed Jaffar Ali Raza, Mingjie Lin
{"title":"Policy Reuse in Reinforcement Learning for Modular Agents","authors":"Sayyed Jaffar Ali Raza, Mingjie Lin","doi":"10.1109/INFOCT.2019.8710861","DOIUrl":null,"url":null,"abstract":"We present reusable policy method for modular reinforcement learning problem in continuous state space. Our method relies on two-layered learning architecture. The first layer partitions the agent’s problem space into n-folds sub-agents that are inter-connected with each other with dexterity identical to original problem. It further learns a local control policy for standalone 1-fold sub-agent. The second layer learns a global policy to reuse ‘already learnt’ standalone local policy over each n sub-agents by sampling local policy with global parameters for each sub-agent—parameterizing local policy independently to approximate non-linear interconnections between sub-agents. We demonstrate our method on simulation example of 12-DOF modular robot that learns maneuver pattern of snake-like gait. We also compare our proposed method against standard single-policy learning methods to benchmark optimality.","PeriodicalId":369231,"journal":{"name":"2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCT.2019.8710861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present reusable policy method for modular reinforcement learning problem in continuous state space. Our method relies on two-layered learning architecture. The first layer partitions the agent’s problem space into n-folds sub-agents that are inter-connected with each other with dexterity identical to original problem. It further learns a local control policy for standalone 1-fold sub-agent. The second layer learns a global policy to reuse ‘already learnt’ standalone local policy over each n sub-agents by sampling local policy with global parameters for each sub-agent—parameterizing local policy independently to approximate non-linear interconnections between sub-agents. We demonstrate our method on simulation example of 12-DOF modular robot that learns maneuver pattern of snake-like gait. We also compare our proposed method against standard single-policy learning methods to benchmark optimality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模块化智能体强化学习中的策略重用
针对连续状态空间中的模块化强化学习问题,提出了可重用策略方法。我们的方法依赖于两层学习架构。第一层将智能体的问题空间划分为n层子智能体,这些子智能体以与原问题相同的灵巧度相互连接。它进一步学习了独立1-fold子代理的本地控制策略。第二层学习全局策略,通过对每个子代理使用全局参数采样本地策略,从而在每n个子代理上重用“已经学习过的”独立本地策略,独立参数化本地策略以近似子代理之间的非线性互连。最后以一个学习蛇形步态机动模式的12自由度模块化机器人为例进行了仿真验证。我们还将我们提出的方法与标准的单策略学习方法进行了比较,以衡量最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilization of Data Mining for Generalizable, All-Admission Prediction of Inpatient Mortality Development of Navigation Monitoring & Assistance Service Data Model ITIKI Plus: A Mobile Based Application for Integrating Indigenous Knowledge and Scientific Agro-Climate Decision Support for Africa’s Small-Scale Farmers TFDroid: Android Malware Detection by Topics and Sensitive Data Flows Using Machine Learning Techniques Weighted DV-Hop Localization Algorithm for Wireless Sensor Network based on Differential Evolution Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1