Lane identification and ego-vehicle accurate global positioning in intersections

V. Popescu, Mihai Bâce, S. Nedevschi
{"title":"Lane identification and ego-vehicle accurate global positioning in intersections","authors":"V. Popescu, Mihai Bâce, S. Nedevschi","doi":"10.1109/IVS.2011.5940523","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for achieving accurate ego-vehicle global localization with respect to an approaching intersection; the method is based on the data alignment of the information from two input systems: a Sensorial Perception system, on-board of the ego-vehicle, and an a priori digital map. For this purpose an Extended Digital Map is proposed that contains the detailed information about the intersection infrastructure: detailed landmarks accurately measured and positioned on the map. The data alignment mechanism is thus based on superimposing the sensorial detected landmarks with the corresponding, correctly positioned map landmarks stored in the new Extended Digital Map. The data Alignment Algorithm requires as input, beside the information from the two input systems, the ego-vehicle driving lane. This information is inferred by using a probabilistic approach in the form of a Bayesian Network; the uncertain and noisy character of the sensorial data require such a probabilistic approach in the quest of the ego-lane.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper proposes a method for achieving accurate ego-vehicle global localization with respect to an approaching intersection; the method is based on the data alignment of the information from two input systems: a Sensorial Perception system, on-board of the ego-vehicle, and an a priori digital map. For this purpose an Extended Digital Map is proposed that contains the detailed information about the intersection infrastructure: detailed landmarks accurately measured and positioned on the map. The data alignment mechanism is thus based on superimposing the sensorial detected landmarks with the corresponding, correctly positioned map landmarks stored in the new Extended Digital Map. The data Alignment Algorithm requires as input, beside the information from the two input systems, the ego-vehicle driving lane. This information is inferred by using a probabilistic approach in the form of a Bayesian Network; the uncertain and noisy character of the sensorial data require such a probabilistic approach in the quest of the ego-lane.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交叉口车道识别与自车精确全球定位
本文提出了一种针对接近的交叉口实现精确的自驾车全局定位的方法;该方法基于来自两个输入系统的信息的数据对齐:一个感官感知系统,在自我车辆上,和一个先验的数字地图。为此,我们提出了一种扩展数字地图,它包含了关于十字路口基础设施的详细信息:精确测量和定位在地图上的详细地标。因此,数据对齐机制是基于将传感器检测到的地标与存储在新的扩展数字地图中的相应的、正确定位的地图地标叠加在一起。数据对齐算法除了需要两个输入系统的信息外,还需要小车的行驶车道作为输入。这些信息是通过使用贝叶斯网络形式的概率方法推断出来的;感官数据的不确定性和噪声特性要求在寻找自我通道时采用这种概率方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent headlight control using learning-based approaches Piecewise affine state feedback controller for lane departure avoidance U-V-Disparity based Obstacle Detection with 3D Camera and steerable filter Invariant set based vehicle handling improvement at tire saturation using fuzzy output feedback Lane change intent prediction for driver assistance: On-road design and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1