Lp norm spectral regression for feature extraction in outlier conditions

Weiwei Zhou, Peiyang Li, Xurui Wang, Fali Li, Huan Liu, Rui Zhang, Teng Ma, Tiejun Liu, Daqing Guo, D. Yao, Peng Xu
{"title":"Lp norm spectral regression for feature extraction in outlier conditions","authors":"Weiwei Zhou, Peiyang Li, Xurui Wang, Fali Li, Huan Liu, Rui Zhang, Teng Ma, Tiejun Liu, Daqing Guo, D. Yao, Peng Xu","doi":"10.1109/ICDSP.2015.7251930","DOIUrl":null,"url":null,"abstract":"Spectral regression is a newly proposed method which is widely used in signal processing and feature extraction. However, like most methods based on regression analysis, it is prone to outlier artifacts with large norm. In this paper, a novel regression function for SR is constructed in the Lp (p ≤ 1) norm space with the aim at compressing the outlier effects on pattern recognition. The quantitative evaluation using simulated outliers demonstrates the proposed method can effectively deal with the outliers introduced in the features.","PeriodicalId":216293,"journal":{"name":"2015 IEEE International Conference on Digital Signal Processing (DSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2015.7251930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Spectral regression is a newly proposed method which is widely used in signal processing and feature extraction. However, like most methods based on regression analysis, it is prone to outlier artifacts with large norm. In this paper, a novel regression function for SR is constructed in the Lp (p ≤ 1) norm space with the aim at compressing the outlier effects on pattern recognition. The quantitative evaluation using simulated outliers demonstrates the proposed method can effectively deal with the outliers introduced in the features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lp范数光谱回归在离群条件下的特征提取
谱回归是一种新提出的方法,广泛应用于信号处理和特征提取。然而,像大多数基于回归分析的方法一样,它容易出现较大范数的离群工件。本文在Lp (p≤1)范数空间中构造了一种新的SR回归函数,以压缩异常值对模式识别的影响。通过模拟离群值的定量评价表明,该方法可以有效地处理特征中引入的离群值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of the noise robustness problem and a new blind channel identification algorithm A stochastic geometry based performance analysis framework for massive MIMO systems with data-assisted uplink detection scheme Gunshot acoustic component localization with distributed circular microphone arrays An ensemble technique for estimating vehicle speed and gear position from acoustic data On optimal sparsifying dictionary design with application to image inpainting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1