A dimension reduction method of situation knowledge based on Sparse Autoencoder

Chuang Wang, Song Li, Wenfeng Wei, Shijie Li, Jiayi Liu
{"title":"A dimension reduction method of situation knowledge based on Sparse Autoencoder","authors":"Chuang Wang, Song Li, Wenfeng Wei, Shijie Li, Jiayi Liu","doi":"10.1145/3446132.3446151","DOIUrl":null,"url":null,"abstract":"Under the background of great changes in military science and technology theory, in order to solve the problem of massive high-dimensional situation knowledge processing in the process of battlefield situation assessment.The current dimensionality reduction methods often ignore the influence of algorithm complexity and model representation ability on dimensionality reduction when solving the massive dimensionality reduction problem of high-dimensional situation knowledge. In order to balance this problem, this paper proposes a situation knowledge dimension reduction method based on Sparse Autoencoder, which has a good performance in achieving dimension reduction of high-dimensional situation information and obtaining its abstract feature representation.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Under the background of great changes in military science and technology theory, in order to solve the problem of massive high-dimensional situation knowledge processing in the process of battlefield situation assessment.The current dimensionality reduction methods often ignore the influence of algorithm complexity and model representation ability on dimensionality reduction when solving the massive dimensionality reduction problem of high-dimensional situation knowledge. In order to balance this problem, this paper proposes a situation knowledge dimension reduction method based on Sparse Autoencoder, which has a good performance in achieving dimension reduction of high-dimensional situation information and obtaining its abstract feature representation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏自编码器的情境知识降维方法
在军事科技理论发生巨大变化的背景下,为了解决战场态势评估过程中海量高维态势知识处理问题。当前的降维方法在解决高维情景知识的海量降维问题时,往往忽略了算法复杂度和模型表示能力对降维的影响。为了平衡这一问题,本文提出了一种基于稀疏自编码器的态势知识降维方法,该方法在实现高维态势信息降维并获得其抽象特征表示方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lane Detection Combining Details and Integrity: an Advanced Method for Lane Detection The Cat's Eye Effect Target Recognition Method Based on deep convolutional neural network Leveraging Different Context for Response Generation through Topic-guided Multi-head Attention Siamese Multiplicative LSTM for Semantic Text Similarity Multi-constrained Vehicle Routing Problem Solution based on Adaptive Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1