A Sub-meter Accurate Positioning using 5G Double-difference Carrier Phase Measurements

Chengming Jin, Wee Peng Tay, K. Zhao, Keck Voon Ling, Jun Lu, Yue Wang
{"title":"A Sub-meter Accurate Positioning using 5G Double-difference Carrier Phase Measurements","authors":"Chengming Jin, Wee Peng Tay, K. Zhao, Keck Voon Ling, Jun Lu, Yue Wang","doi":"10.1109/PLANS53410.2023.10139995","DOIUrl":null,"url":null,"abstract":"Apart from communications, the Fifth Generation (5G) technology is also motivated by positioning requirements down to the sub-meter level across industry verticals. In this work, we utilize Universal Software Radio Peripheral to transmit and receive the 5G New Radio signals. The obtained samples are then processed by the proposed 5G code and carrier phase software defined receiver. In this process, the dedicated 5G Positioning Reference Signal (PRS) is adopted to obtain time of arrival estimates using more accurate carrier phase measure-ments instead of code phase measurements. The continuously transmitted 5G PRSs over time enable accurate carrier phase tracking and avoid ambiguity problems during the tracking stage in line-of-sight environments. Furthermore, a roadside unit is set up to observe the same signals and cancel out the measurement error introduced by the clock offset between two transmitters. Finally, some field experiments are carried out, and the experimental results indicate that using 5G double-difference carrier phase measurements from only four transmitters, a position root mean square error of 0.790m is achievable.","PeriodicalId":344794,"journal":{"name":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS53410.2023.10139995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Apart from communications, the Fifth Generation (5G) technology is also motivated by positioning requirements down to the sub-meter level across industry verticals. In this work, we utilize Universal Software Radio Peripheral to transmit and receive the 5G New Radio signals. The obtained samples are then processed by the proposed 5G code and carrier phase software defined receiver. In this process, the dedicated 5G Positioning Reference Signal (PRS) is adopted to obtain time of arrival estimates using more accurate carrier phase measure-ments instead of code phase measurements. The continuously transmitted 5G PRSs over time enable accurate carrier phase tracking and avoid ambiguity problems during the tracking stage in line-of-sight environments. Furthermore, a roadside unit is set up to observe the same signals and cancel out the measurement error introduced by the clock offset between two transmitters. Finally, some field experiments are carried out, and the experimental results indicate that using 5G double-difference carrier phase measurements from only four transmitters, a position root mean square error of 0.790m is achievable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用5G双差载波相位测量实现亚米级精确定位
除了通信之外,第五代(5G)技术还受到行业垂直领域精确到亚米级别的定位需求的推动。在这项工作中,我们利用通用软件无线电外设来发送和接收5G新无线电信号。然后,所获得的样品由所提议的5G代码和载波相位软件定义的接收器进行处理。在此过程中,采用专用的5G定位参考信号(PRS),使用更精确的载波相位测量而不是码相位测量来获得到达时间估计。随着时间的推移,连续传输的5G prs可以实现精确的载波相位跟踪,并避免在视距环境中跟踪阶段出现模糊问题。此外,还设置了一个路边单元来观察相同的信号,并抵消两个发射机之间的时钟偏移所带来的测量误差。最后,进行了一些现场实验,实验结果表明,仅使用4台发射机进行5G双差载波相位测量,可以实现0.790m的位置均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulations using LEO-PNT systems: A Brief Survey Signal Mode Transition Detection in Starlink LEO Satellite Downlink Signals Terrain-Relative Navigation with Neuro-Inspired Elevation Encoding Random Finite Set Approach to Signal Strength Based Passive Localization and Tracking Prediction of Ground Wave Propagation Delays in Terrestrial Radio Navigation Systems Based on Soil Texture Maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1