Air Quality Time Series Prediction Optimized by Grey Wolf Algorithm

Si Wei, Hui Xi, Kaiwang Zhang, Yijia Yun, Haoran Li
{"title":"Air Quality Time Series Prediction Optimized by Grey Wolf Algorithm","authors":"Si Wei, Hui Xi, Kaiwang Zhang, Yijia Yun, Haoran Li","doi":"10.1109/ISPDS56360.2022.9874066","DOIUrl":null,"url":null,"abstract":"To enhance prediction reliability and accuracy, an Lstm model optimized by the improved grey wolf algorithm is introduced for daily air quality index forecasting. Firstly, the model preprocesses the collected data and divides the data into a training set and a testing set. Then, using Tent Chaotic Sequence to generate an initial population, which increases the diversity of individuals in the population; And aming at the shortage of the search ability of Grey Wolf Optimization (GWO), updating the parameters $a$. The improved GWO (IGWO) used to optimize the relevant hyperparameters in the long and short-term memory neural network. Finally, the IGWO-LSTM model constructed with excellent hyperparameters will use the test set to obtain the prediction results. The experimental results demonstrate the proposed method outperforms the other four model in AQI prediction.","PeriodicalId":280244,"journal":{"name":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Information Science, Parallel and Distributed Systems (ISPDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDS56360.2022.9874066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance prediction reliability and accuracy, an Lstm model optimized by the improved grey wolf algorithm is introduced for daily air quality index forecasting. Firstly, the model preprocesses the collected data and divides the data into a training set and a testing set. Then, using Tent Chaotic Sequence to generate an initial population, which increases the diversity of individuals in the population; And aming at the shortage of the search ability of Grey Wolf Optimization (GWO), updating the parameters $a$. The improved GWO (IGWO) used to optimize the relevant hyperparameters in the long and short-term memory neural network. Finally, the IGWO-LSTM model constructed with excellent hyperparameters will use the test set to obtain the prediction results. The experimental results demonstrate the proposed method outperforms the other four model in AQI prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
灰狼算法优化的空气质量时间序列预测
为了提高预测的可靠性和准确性,引入了一种改进灰狼算法优化的Lstm模型进行日空气质量指数预测。该模型首先对采集到的数据进行预处理,并将数据分为训练集和测试集。然后,利用Tent混沌序列生成初始种群,增加种群中个体的多样性;并针对灰狼优化算法搜索能力的不足,对参数进行了更新。将改进的GWO (IGWO)用于优化长短期记忆神经网络的相关超参数。最后,由优秀超参数构建的IGWO-LSTM模型将使用测试集获得预测结果。实验结果表明,该方法在AQI预测方面优于其他四种模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Intelligent Quality Inspection of Customer Service Under the “One Network” Operation Mode of Toll Roads Application of AE keying technology in film and television post-production Study on Artifact Classification Identification Based on Deep Learning Design of Real-time Target Detection System in CCD Vertical Target Coordinate Measurement An evaluation method of municipal pipeline cleaning effect based on image processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1