J. Femila Mercy Rani, S. Sevukaperumal, Lakshmanan Rajendran
{"title":"Analytical Expression of Effectiveness Factor for Immobilized Enzymes System with Reversible Michaelis Menten Kinetics","authors":"J. Femila Mercy Rani, S. Sevukaperumal, Lakshmanan Rajendran","doi":"10.51983/ajsat-2015.4.1.910","DOIUrl":null,"url":null,"abstract":"The mathematical model of immobilized enzyme system in porous spherical particle is presented. This model is based on a non-stationary diffusion equation containing a nonlinear term related to Michaelis-Menten kinetics of enzymatic reaction. A general and closed form of an analytical expression pertaining to the substrate concentration profile and effectiveness factor are reported for all possible values of Thiele modules φ andα . However, we have employed New Homotopy Perturbation Method (NHPM) to solve the nonlinear reaction/diffusion equation in immobilized enzymes system. Therefore, analytical results were found to be in an appropriate agreement with simulation result.","PeriodicalId":414891,"journal":{"name":"Asian Journal of Science and Applied Technology","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Science and Applied Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/ajsat-2015.4.1.910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The mathematical model of immobilized enzyme system in porous spherical particle is presented. This model is based on a non-stationary diffusion equation containing a nonlinear term related to Michaelis-Menten kinetics of enzymatic reaction. A general and closed form of an analytical expression pertaining to the substrate concentration profile and effectiveness factor are reported for all possible values of Thiele modules φ andα . However, we have employed New Homotopy Perturbation Method (NHPM) to solve the nonlinear reaction/diffusion equation in immobilized enzymes system. Therefore, analytical results were found to be in an appropriate agreement with simulation result.