{"title":"A cost-effective near-line storage server for multimedia system","authors":"S. Lau, John C.S. Lui, P. Wong","doi":"10.1109/ICDE.1995.380369","DOIUrl":null,"url":null,"abstract":"We consider a storage server architecture for multimedia information systems. While most other works on multimedia storage servers assume on-line disk storage, we consider a two-tier storage architecture with a robotic tape library as the vast near-line storage and on-line disks as the front-line storage. Magnetic tapes are cheaper, more robust, and have a larger capacity; hence they are more cost effective for large scale storage systems (e.g., video on demand (VOD) systems may store tens of thousands of videos). We study in detail the design issues of the tape subsystem and propose some novel tape scheduling algorithms which give faster response and require less disk buffering.<<ETX>>","PeriodicalId":184415,"journal":{"name":"Proceedings of the Eleventh International Conference on Data Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.1995.380369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
We consider a storage server architecture for multimedia information systems. While most other works on multimedia storage servers assume on-line disk storage, we consider a two-tier storage architecture with a robotic tape library as the vast near-line storage and on-line disks as the front-line storage. Magnetic tapes are cheaper, more robust, and have a larger capacity; hence they are more cost effective for large scale storage systems (e.g., video on demand (VOD) systems may store tens of thousands of videos). We study in detail the design issues of the tape subsystem and propose some novel tape scheduling algorithms which give faster response and require less disk buffering.<>