Registration and Deformation of 3D Shape Data through Parameterized Formulation

T. Masuda, K. Ikeuchi
{"title":"Registration and Deformation of 3D Shape Data through Parameterized Formulation","authors":"T. Masuda, K. Ikeuchi","doi":"10.2197/IPSJDC.3.404","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate conventional registration implementation, consisting of rotation and translation, to design the most precise registration so as to accurately restore the 3D shape of an object. To achieve the most accurate registration, our registration implementation needs robustness against data noise, or initial pose and position of data. To verify the accuracy of our implemented registration, we compare the registration behavior with the registration behavior of conventional methods, and evaluate the numerical accuracy of transformation parameter obtained by our registration. However, registration by rigid-body transformation is not enough for modeling and shape comparison: registration with deformation is needed. In this paper, we extend our robust registration to simultaneously estimate the shape parameter as well as the rigid-body transformation parameter. This extension method assumes that the deformation is formulated strictly from the deformation mechanism. We additionally introduce the applications of our extension method.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.3.404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigate conventional registration implementation, consisting of rotation and translation, to design the most precise registration so as to accurately restore the 3D shape of an object. To achieve the most accurate registration, our registration implementation needs robustness against data noise, or initial pose and position of data. To verify the accuracy of our implemented registration, we compare the registration behavior with the registration behavior of conventional methods, and evaluate the numerical accuracy of transformation parameter obtained by our registration. However, registration by rigid-body transformation is not enough for modeling and shape comparison: registration with deformation is needed. In this paper, we extend our robust registration to simultaneously estimate the shape parameter as well as the rigid-body transformation parameter. This extension method assumes that the deformation is formulated strictly from the deformation mechanism. We additionally introduce the applications of our extension method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维形状数据的参数化配准与变形
在本文中,我们研究了传统的配准实现,包括旋转和平移,以设计最精确的配准,以准确地恢复物体的三维形状。为了实现最准确的配准,我们的配准实现需要对数据噪声或数据的初始姿态和位置具有鲁棒性。为了验证所实现配准的准确性,我们将所实现的配准行为与常规方法的配准行为进行了比较,并对所实现的配准所获得的变换参数的数值精度进行了评价。然而,仅通过刚体变换进行配准是不够的,还需要进行变形配准。在本文中,我们将鲁棒配准扩展到同时估计形状参数和刚体转换参数。这种推广方法假定变形是严格从变形机理出发的。另外还介绍了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distributed-Processing System for Accelerating Biological Research Using Data-Staging A Type System for Dynamic Delimited Continuations A Combination Method of the Tanimoto Coefficient and Proximity Measure of Random Forest for Compound Activity Prediction Peer-to-Peer Multimedia Streaming with Guaranteed QoS for Future Real-time Applications A Benchmark Tool for Network I/O Management Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1