Removal of hand-drawn annotation lines from document images by digital-geometric analysis and inpainting

Sanjoy Pratihar, Partha Bhowmick, S. Sural, J. Mukhopadhyay
{"title":"Removal of hand-drawn annotation lines from document images by digital-geometric analysis and inpainting","authors":"Sanjoy Pratihar, Partha Bhowmick, S. Sural, J. Mukhopadhyay","doi":"10.1109/NCVPRIPG.2013.6776179","DOIUrl":null,"url":null,"abstract":"Performance of an OCR system is badly affected due to presence of hand-drawn annotation lines in various forms, such as underlines, circular lines, and other text-surrounding curves. Such annotation lines are drawn by a reader usually in free hand in order to summarize some text or to mark the keywords within a document page. In this paper, we propose a generalized scheme for detection and removal of these hand-drawn annotations from a scanned document page. An underline drawn by hand is roughly horizontal or has a tolerable undulation, whereas for a hand-drawn curved line, the slope usually changes at a gradual pace. Based on this observation, we detect the cover of an annotation object-be it straight or curved-as a sequence of straight edge segments. The novelty of the proposed method lies in its ability to compute the exact cover of the annotation object, even when it touches or passes through any text character. After getting the annotation cover, an effective method of inpainting is used to quantify the regions where text reconstruction is needed. We have done our experimentation with various documents written in English, and some results are presented here to show the efficiency and robustness of the proposed method.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Performance of an OCR system is badly affected due to presence of hand-drawn annotation lines in various forms, such as underlines, circular lines, and other text-surrounding curves. Such annotation lines are drawn by a reader usually in free hand in order to summarize some text or to mark the keywords within a document page. In this paper, we propose a generalized scheme for detection and removal of these hand-drawn annotations from a scanned document page. An underline drawn by hand is roughly horizontal or has a tolerable undulation, whereas for a hand-drawn curved line, the slope usually changes at a gradual pace. Based on this observation, we detect the cover of an annotation object-be it straight or curved-as a sequence of straight edge segments. The novelty of the proposed method lies in its ability to compute the exact cover of the annotation object, even when it touches or passes through any text character. After getting the annotation cover, an effective method of inpainting is used to quantify the regions where text reconstruction is needed. We have done our experimentation with various documents written in English, and some results are presented here to show the efficiency and robustness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数字几何分析和绘图从文档图像中去除手绘注释线
由于存在各种形式的手绘注释线(如下划线、圆形线和其他文本周围曲线),OCR系统的性能受到严重影响。这种注释线通常是由读者徒手绘制的,目的是总结某些文本或标记文档页面中的关键字。在本文中,我们提出了一种从扫描文档页面中检测和去除这些手绘注释的通用方案。手工绘制的下划线大致是水平的,或者有一个可以容忍的波动,而手工绘制的曲线,斜率通常以渐进的速度变化。基于这一观察,我们检测标注对象的覆盖——无论是直的还是弯曲的——作为一个直边片段的序列。所提出的方法的新颖之处在于它能够计算注释对象的确切覆盖范围,即使它触及或经过任何文本字符。在得到标注封面后,采用一种有效的补图方法对需要重建的文本区域进行量化。我们对各种英文文档进行了实验,并给出了一些结果,以证明所提出方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1