{"title":"Electron Energy Loss Spectroscopy (EELS) Application to Mineral Formation","authors":"Kiho Yang, Jin-wook Kim","doi":"10.9727/jmsk.2016.29.2.73","DOIUrl":null,"url":null,"abstract":"The oxidation states of structural Fe in clay minerals often reflect the paleo-redox conditions of the depositional environments. It is inevitable to utilize the high resolution of transmission electron microscopy (TEM) to investigate the mechanism of mineral transformation at nano-scale. The applications of TEMelectron energy loss spectroscopy (EELS) for quantification of Fe(III)/ΣFe from the K-nontronite formation associated with structural Fe(III) reduction in nontronite under deep subseafloor environment were demonstrated. In particular, quantification of the changes in Fe-oxidation state at nanoscale is essential to understand the mechanisms of minerals formation. The procedure of EELS acquisition, quantitative determination of Fe-oxidation states, and advantages of EELS techniques were discussed.","PeriodicalId":332349,"journal":{"name":"Journal of the mineralogical society of Korea","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mineralogical society of Korea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9727/jmsk.2016.29.2.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The oxidation states of structural Fe in clay minerals often reflect the paleo-redox conditions of the depositional environments. It is inevitable to utilize the high resolution of transmission electron microscopy (TEM) to investigate the mechanism of mineral transformation at nano-scale. The applications of TEMelectron energy loss spectroscopy (EELS) for quantification of Fe(III)/ΣFe from the K-nontronite formation associated with structural Fe(III) reduction in nontronite under deep subseafloor environment were demonstrated. In particular, quantification of the changes in Fe-oxidation state at nanoscale is essential to understand the mechanisms of minerals formation. The procedure of EELS acquisition, quantitative determination of Fe-oxidation states, and advantages of EELS techniques were discussed.