A Model Stacking Approach for Ride-Hailing Demand Forecasting : a Case Study of Algiers

Soumia Boumeddane, Leila Hamdad, Abdelkader Abou El-Feda Bouregag, Miloud Damene, Souhila Sadeg
{"title":"A Model Stacking Approach for Ride-Hailing Demand Forecasting : a Case Study of Algiers","authors":"Soumia Boumeddane, Leila Hamdad, Abdelkader Abou El-Feda Bouregag, Miloud Damene, Souhila Sadeg","doi":"10.1109/IHSH51661.2021.9378731","DOIUrl":null,"url":null,"abstract":"A good understanding of supply of taxis drivers and demand of passengers through the forecasting of future demands is important for an intelligent transportation system in smart cities. A good prediction allows a better allocation of taxi fleets, reduce passengers' waiting time and energy waste for taxis. In this paper, we harness the power of statistical and machine learning models in a joint ensemble model and propose a stacking approach which combines the predictions of ARIMA, SARIMA, MLP, LSTM and XGBoost. Our proposed approach consider also external factors such weather conditions and national holidays. We consider in this work the city of Algiers as a case study, using ride hailing data of an Algerian ride-hailing platform. Experimental results show that our model performed better than the selected baseline statistical and machine learning algorithms.","PeriodicalId":127735,"journal":{"name":"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHSH51661.2021.9378731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A good understanding of supply of taxis drivers and demand of passengers through the forecasting of future demands is important for an intelligent transportation system in smart cities. A good prediction allows a better allocation of taxi fleets, reduce passengers' waiting time and energy waste for taxis. In this paper, we harness the power of statistical and machine learning models in a joint ensemble model and propose a stacking approach which combines the predictions of ARIMA, SARIMA, MLP, LSTM and XGBoost. Our proposed approach consider also external factors such weather conditions and national holidays. We consider in this work the city of Algiers as a case study, using ride hailing data of an Algerian ride-hailing platform. Experimental results show that our model performed better than the selected baseline statistical and machine learning algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网约车需求预测的模型叠加方法:以阿尔及尔市为例
通过对未来需求的预测,了解出租车司机的供给和乘客的需求,对于智慧城市的智能交通系统至关重要。一个好的预测可以更好地分配出租车车队,减少乘客的等待时间和出租车的能源浪费。在本文中,我们在联合集成模型中利用统计模型和机器学习模型的力量,并提出了一种结合ARIMA, SARIMA, MLP, LSTM和XGBoost预测的叠加方法。我们建议的方法还考虑了外部因素,如天气条件和国定假日。在这项工作中,我们考虑阿尔及尔市作为一个案例研究,使用阿尔及利亚乘车平台的乘车数据。实验结果表明,我们的模型比选择的基线统计和机器学习算法性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decision-making based on decision tree for ball bearing monitoring An Improved Simulated Annealing Algorithm for Optimization of Protein Folding Problem Intelligent myoelectric control of a humeral ampulation Content Based COVID-19 Chest X-Ray and CT Images Retrieval framework using Stacked Auto-Encoders Deep Network Construction using Autoencoder for Abnormality Detection in Radiotherapy Service
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1