Long-term background memory based on Gaussian mixture model

W. Zhao, X. D. Zhao, W. M. Liu, X. L. Tang
{"title":"Long-term background memory based on Gaussian mixture model","authors":"W. Zhao, X. D. Zhao, W. M. Liu, X. L. Tang","doi":"10.1109/VCIP.2013.6706397","DOIUrl":null,"url":null,"abstract":"This paper aims to present a long-term background memory framework, which is capable of memorizing long period background in video and rapidly adapting to the changes of background. Based on Gaussian mixture model (GMM), this framework enables an accurate identification of long period background appearances and presents a perfect solution to numerous typical problems on foreground detection. The experimental results with various benchmark sequences quantitatively and qualitatively demonstrate that the proposed algorithm outperforms many GMM-based methods for foreground detection, as well as other representative approaches.","PeriodicalId":407080,"journal":{"name":"2013 Visual Communications and Image Processing (VCIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2013.6706397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper aims to present a long-term background memory framework, which is capable of memorizing long period background in video and rapidly adapting to the changes of background. Based on Gaussian mixture model (GMM), this framework enables an accurate identification of long period background appearances and presents a perfect solution to numerous typical problems on foreground detection. The experimental results with various benchmark sequences quantitatively and qualitatively demonstrate that the proposed algorithm outperforms many GMM-based methods for foreground detection, as well as other representative approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯混合模型的长期背景记忆
本文旨在提出一种长时间背景记忆框架,能够记忆视频中的长时间背景,并能快速适应背景的变化。该框架基于高斯混合模型(GMM),能够准确地识别长周期背景,为前景检测中的许多典型问题提供了完美的解决方案。各种基准序列的定量和定性实验结果表明,该算法在前景检测方面优于许多基于gmm的方法,以及其他代表性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New motherwavelet for pattern detection in IR image Improved disparity vector derivation in 3D-HEVC Learning non-negative locality-constrained Linear Coding for human action recognition Wavelet based smoke detection method with RGB Contrast-image and shape constrain Joint image denoising using self-similarity based low-rank approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1