Lip tracking under varying expressions utilizing domain knowledge

Swapna Agarwal, D. Mukherjee
{"title":"Lip tracking under varying expressions utilizing domain knowledge","authors":"Swapna Agarwal, D. Mukherjee","doi":"10.1109/NCVPRIPG.2013.6776201","DOIUrl":null,"url":null,"abstract":"In recent years the need of a robust facial component tracking especially lip tracking algorithm has increased dramatically. We implement an active contour (snake) model inspired by human perception for lip tracking. In addition to the conventional energy terms for tension, rigidity (internal energy) and gradient magnitude (external energy) we propose to include energy terms from domain knowledge for lip shape constraint and local region profile constraint. Generalized deterministic annealing (GDA) update of the energy functional helps the solution to escape suboptimal local minima in the energy space and give better tracking result. Experimental results show that the proposed method efficiently adapts to the highly deformable lip boundaries even for lips with indistinct edges and colored (adorned) lips where gradient magnitude based or local region based tracking methods respectively fail. We have done a number of experiments to evaluate the performance of our method in comparison with the existing state-of-the-art methods.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years the need of a robust facial component tracking especially lip tracking algorithm has increased dramatically. We implement an active contour (snake) model inspired by human perception for lip tracking. In addition to the conventional energy terms for tension, rigidity (internal energy) and gradient magnitude (external energy) we propose to include energy terms from domain knowledge for lip shape constraint and local region profile constraint. Generalized deterministic annealing (GDA) update of the energy functional helps the solution to escape suboptimal local minima in the energy space and give better tracking result. Experimental results show that the proposed method efficiently adapts to the highly deformable lip boundaries even for lips with indistinct edges and colored (adorned) lips where gradient magnitude based or local region based tracking methods respectively fail. We have done a number of experiments to evaluate the performance of our method in comparison with the existing state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于领域知识的唇形跟踪
近年来,对鲁棒性面部特征跟踪尤其是唇形跟踪算法的需求急剧增加。我们实现了一个受人类感知启发的活动轮廓(蛇)模型,用于唇形跟踪。除了常规的张力、刚度(内部能量)和梯度大小(外部能量)的能量项外,我们建议在唇形约束和局部区域轮廓约束中加入来自领域知识的能量项。对能量泛函进行广义确定性退火(GDA)更新,使解摆脱了能量空间中的次优局部极小值,得到了更好的跟踪结果。实验结果表明,在基于梯度幅度和局部区域的跟踪方法均无法实现的情况下,该方法能够有效地适应唇边界高度变形的情况。我们已经做了许多实验来评估我们的方法与现有的最先进的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1