Exploiting Non-Parallel Corpora for Statistical Machine Translation

Cuong Hoang, Anh-Cuong Le, Phuong-Thai Nguyen, T. Ho
{"title":"Exploiting Non-Parallel Corpora for Statistical Machine Translation","authors":"Cuong Hoang, Anh-Cuong Le, Phuong-Thai Nguyen, T. Ho","doi":"10.1109/rivf.2012.6169833","DOIUrl":null,"url":null,"abstract":"Constructing a corpus of parallel sentence pairs is an important work in building a Statistical Machine Translation system. It impacts deeply how the quality of a Statistical Machine Translation could achieve. The more parallel sentence pairs we use to train the system, the better translation's quality it is. Nowadays, comparable non-parallel corpora become important resources to alleviate scarcity of parallel corpora. The problem here is how to extract parallel sentence pairs automatically but accurately from comparable non-parallel corpora, which are usually very \"noisy\". This paper presents how we can apply the reinforcement-learning scheme with our new proposed algorithm for detecting parallel sentence pairs. We specify that from an initial set of parallel sentences in a domain, the proposed model can extract a large number of new parallel sentence pairs from non-parallel corpora resources in different domains, concurrently increasing the system's translation ability gradually.","PeriodicalId":115212,"journal":{"name":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rivf.2012.6169833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Constructing a corpus of parallel sentence pairs is an important work in building a Statistical Machine Translation system. It impacts deeply how the quality of a Statistical Machine Translation could achieve. The more parallel sentence pairs we use to train the system, the better translation's quality it is. Nowadays, comparable non-parallel corpora become important resources to alleviate scarcity of parallel corpora. The problem here is how to extract parallel sentence pairs automatically but accurately from comparable non-parallel corpora, which are usually very "noisy". This paper presents how we can apply the reinforcement-learning scheme with our new proposed algorithm for detecting parallel sentence pairs. We specify that from an initial set of parallel sentences in a domain, the proposed model can extract a large number of new parallel sentence pairs from non-parallel corpora resources in different domains, concurrently increasing the system's translation ability gradually.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用非平行语料库进行统计机器翻译
并行句对语料库的构建是统计机器翻译系统的重要组成部分。它深刻地影响了统计机器翻译的质量。我们使用越多的平行句对来训练系统,翻译质量就越好。目前,可比较的非平行语料库已成为缓解平行语料库短缺的重要资源。这里的问题是如何从通常非常“嘈杂”的可比较非平行语料库中自动准确地提取平行句子对。本文介绍了我们如何将强化学习方案与我们提出的新算法应用于平行句子对的检测。我们指出,该模型可以从一个领域的初始平行句集合中,从不同领域的非平行语料库资源中提取大量新的平行句对,同时逐步提高系统的翻译能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Relationship of Contact Angle and Input Shaping Scheme in Automotive Wiper System An Experimental Study about Efficiency of the Approximation Algorithms for Minimum Latency Problem A Modified Regularized Non-Negative Matrix Factorization for MovieLens A Heuristic Algorithm for Finding the Closest Trio of 3-Colored Points from a Given Set of 3-Colored Points on Plane Simulation of Salinity Intrusion in the Context of the Mekong Delta Region (Viet Nam)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1