GPU-based acceleration of interval type-2 fuzzy c-means clustering for satellite imagery land-cover classification

L. Ngo, D. Mai, Mau Uyen Nguyen
{"title":"GPU-based acceleration of interval type-2 fuzzy c-means clustering for satellite imagery land-cover classification","authors":"L. Ngo, D. Mai, Mau Uyen Nguyen","doi":"10.1109/ISDA.2012.6416674","DOIUrl":null,"url":null,"abstract":"When processing with large data such as satellite images, the computing speed is the problem need to be resolved. This paper introduces a method to improve the computational efficiency of the interval type-2 fuzzy c-means clustering(IT2-FCM) based on GPU platform and applied to land-cover classification from multi-spectral satellite image. GPU-based calculations are high performance solution and free up the CPU. The experimental results show that the performance of the GPU is many times faster than CPU.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

When processing with large data such as satellite images, the computing speed is the problem need to be resolved. This paper introduces a method to improve the computational efficiency of the interval type-2 fuzzy c-means clustering(IT2-FCM) based on GPU platform and applied to land-cover classification from multi-spectral satellite image. GPU-based calculations are high performance solution and free up the CPU. The experimental results show that the performance of the GPU is many times faster than CPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的区间2型模糊c均值聚类加速卫星影像土地覆盖分类
在处理卫星图像等大数据时,计算速度是需要解决的问题。介绍了一种提高基于GPU平台的区间2型模糊c均值聚类(IT2-FCM)计算效率的方法,并将其应用于多光谱卫星影像的土地覆盖分类。基于gpu的计算是高性能的解决方案,并且释放了CPU。实验结果表明,GPU的性能比CPU快很多倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1