Movement assisted-topology control and geographic routing protocol for underwater sensor networks

Rodolfo W. L. Coutinho, L. Vieira, A. Loureiro
{"title":"Movement assisted-topology control and geographic routing protocol for underwater sensor networks","authors":"Rodolfo W. L. Coutinho, L. Vieira, A. Loureiro","doi":"10.1145/2507924.2507956","DOIUrl":null,"url":null,"abstract":"Underwater sensor networks have recently been proposed as a way to observe and to explore the lakes, rivers, seas, and oceans. A challenging issue in these networks is the communication, mainly due to the impairments of the acoustic transmission. Thus, efficient mechanisms to improve the data delivery must be proposed. In this work we present a novel anycast greedy geographic forwarding protocol and two topology control mechanisms. The proposed geo-routing protocol considers the anycast network architecture in the data forwarding process. The proposed centralized topology control (CTC) and distributed topology control (DTC) mechanisms organize the network via depth adjustment of some nodes. The simulation results show that with these mechanisms, the data packet delivery ratio achieves more than 90% even in hard and difficult scenarios of very sparse or very dense networks, the end-to-end delay and energy consumption per delivered packet is reduced.","PeriodicalId":445138,"journal":{"name":"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2507924.2507956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Underwater sensor networks have recently been proposed as a way to observe and to explore the lakes, rivers, seas, and oceans. A challenging issue in these networks is the communication, mainly due to the impairments of the acoustic transmission. Thus, efficient mechanisms to improve the data delivery must be proposed. In this work we present a novel anycast greedy geographic forwarding protocol and two topology control mechanisms. The proposed geo-routing protocol considers the anycast network architecture in the data forwarding process. The proposed centralized topology control (CTC) and distributed topology control (DTC) mechanisms organize the network via depth adjustment of some nodes. The simulation results show that with these mechanisms, the data packet delivery ratio achieves more than 90% even in hard and difficult scenarios of very sparse or very dense networks, the end-to-end delay and energy consumption per delivered packet is reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水下传感器网络的运动辅助拓扑控制和地理路由协议
水下传感器网络最近被提出作为一种观察和探索湖泊、河流、海洋的方法。在这些网络中,一个具有挑战性的问题是通信,主要是由于声传输的损害。因此,必须提出改善数据传递的有效机制。本文提出了一种新的任播贪婪地理转发协议和两种拓扑控制机制。提出的地理路由协议在数据转发过程中考虑了任播网络体系结构。提出了集中式拓扑控制(CTC)和分布式拓扑控制(DTC)机制,通过调整部分节点的深度来组织网络。仿真结果表明,即使在非常稀疏或非常密集的网络中,这些机制也能使数据包的投递率达到90%以上,降低了端到端延迟和每个数据包的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic aware video dissemination over vehicular ad hoc networks Equilibrium sensing time for distributed opportunistic access incognitive radio networks Green wireless: towards minimum per-bit linear energy consumption in wireless communications Performance modeling and analysis of IEEE 802.11 wireless networks with hidden nodes Algorithms for channel assignment in mobile wireless networks using temporal coloring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1