Feature Enhancement and Reweighting for Transformer-Based Change Detection

Sicheng Shao, Zheng Lu, Bin Zhang, Xuetao Zhang
{"title":"Feature Enhancement and Reweighting for Transformer-Based Change Detection","authors":"Sicheng Shao, Zheng Lu, Bin Zhang, Xuetao Zhang","doi":"10.1109/CAC57257.2022.10055045","DOIUrl":null,"url":null,"abstract":"As Transformer is more widely used in the domain of Computer Vision (CV), modern techniques for Change Detection (CD) have also begun to use Transformer structures, including Bitemporal Image Transformer (BIT). Although BIT shows excellent performance due to its efficient context modeling ability, the simple backbone network and the Cross-Entropy (CE) loss it uses still have room for improvement. In this paper, we propose a Feature Pyramid Network of Change Detection (FPN-CD) and a Change Detection focal (CDF) loss to address the shortcomings of the BIT method. Meanwhile, the outcomes of ablation experiments performed on two CD datasets attest to the method's efficacy.","PeriodicalId":287137,"journal":{"name":"2022 China Automation Congress (CAC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 China Automation Congress (CAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAC57257.2022.10055045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As Transformer is more widely used in the domain of Computer Vision (CV), modern techniques for Change Detection (CD) have also begun to use Transformer structures, including Bitemporal Image Transformer (BIT). Although BIT shows excellent performance due to its efficient context modeling ability, the simple backbone network and the Cross-Entropy (CE) loss it uses still have room for improvement. In this paper, we propose a Feature Pyramid Network of Change Detection (FPN-CD) and a Change Detection focal (CDF) loss to address the shortcomings of the BIT method. Meanwhile, the outcomes of ablation experiments performed on two CD datasets attest to the method's efficacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变压器的变化检测特征增强和重加权
随着Transformer在计算机视觉(CV)领域的广泛应用,现代变化检测(CD)技术也开始使用Transformer结构,包括bittemporal Image Transformer (BIT)。尽管BIT由于其高效的上下文建模能力而表现出优异的性能,但其简单的骨干网络和使用的交叉熵(Cross-Entropy, CE)损失仍有改进的空间。在本文中,我们提出了变化检测的特征金字塔网络(FPN-CD)和变化检测焦点(CDF)损失来解决BIT方法的缺点。同时,在两个CD数据集上进行的消融实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Object Tracking in Satellite Videos with Meta-updater and Knowledge Distillation An improved event-trigger-based robust 6-DOF spacecraft formation control scheme under restricted communication Adaptive Neural Fixed-time Tracking Control of Underactuated USVs With External Disturbances Computer-Aided Diagnosis of COVID-19 with Joint Instance Segmentation and Classification Prescribed-Time Backstepping Algorithms for Leader-Follower Multi-Agent Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1