Population Dynamics of Edible Sea Urchins Associated with Variability of Seaweed Beds in Northern Japan
Y. Agatsuma
{"title":"Population Dynamics of Edible Sea Urchins Associated with Variability of Seaweed Beds in Northern Japan","authors":"Y. Agatsuma","doi":"10.5047/ABSM.2014.00702.0047","DOIUrl":null,"url":null,"abstract":". Agatsuma Y, Matsuyama K, Nakata A, Kawai T, Nishikawa N. Marine algal succession on coralline flats after removal of sea urchins in Suttsu Bay on the Japan Sea coast of Hokkaido, Japan. Nippon Suisan Gakkaishi 1997; 63: 672– 680 (in Japanese with English abstract). Agatsuma Y, Nakao S, Motoya S, Tajima K, Miyamoto T. Relationship between year-to-year fluctuations in recruitment of juvenile sea urchins Strongylocentrotus nudus and seawater temperature in southwestern Hokkaido. Fish. Sci. 1998; 64: 1–5. Agatsuma Y, Nakata A, Matsuyama, K. Seasonal foraging activity of the sea urchin Strongylocentrotus nudus on coralline flats in Oshoro Bay in southwestern Hokkaido, Japan. Fish. Sci. 2000; 66: 198–203. Agatsuma Y, Yamada Y, Taniguchi K. Dietary effect of the Y. Agatsuma / Aqua-BioSci. Monogr. 7: 47–78, 2014 71 doi:10.5047/absm.2014.00702.0047 © 2014 TERRAPUB, Tokyo. All rights reserved. boiled stipe of brown alga Undaria pinnatifida on the growth and gonadal enhancement of the sea urchin Strongylocentrotus nudus. Fish. Sci. 2002; 68: 1274–1281. Agatsuma Y, Sakai Y, Andrew NL. Enhancement of Japan’s sea urchin fisheries. In: Lawrence JM, Guzmán O (eds). Sea Urchins: Fisheries and Ecology. DEStech Publication, Lancaster. 2004; 18–36. Agatsuma Y, Nakabayashi N, Miura N, Taniguchi K. Growth and gonad production of the sea urchin Hemicentrotus pulcherrimus in the fucoid bed and algal turf in northern Japan. Mar. Ecol. 2005a; 26: 100–109. Agatsuma Y, Sato M, Taniguchi K. Factors causing browncolored gonads of the sea urchin Strongylocentrotus nudus in northern Honshu, Japan. Aquaculture 2005b; 249: 449– 458. Agatsuma Y, Seki T, Kurata K, Taniguchi K. Instantaneous effect of dibromomethane on metamorphosis of larvae of the sea urchins Strongylocentrotus nudus and Strongylocentrotus intermedius. Aquaculture 2006a; 251: 549–557. Agatsuma Y, Yamada H, Taniguchi K. Distribution of the sea urchin Hemicentrotus pulcherrimus along a shallow bathymetric gradient in Onagawa Bay in northern Honshu, Japan. J. Shellfish Res. 2006b; 25: 1027–1036. Agatsuma Y, Endo Y, Taniguchi K. Inhibitory effect of 2,4dibromophenol and 2,4,6-tribromophenol on larval survival and metamorphosis of the sea urchin Strongylocentrotus nudus. Fish. Sci. 2008; 74: 837–841. Agatsuma Y, Hazama H, Arakawa H. Limited recovery of the kelp Eisenia bicyclis after population reduction of the sea urchin Hemicentrotus pulcherrimus and Anthocidaris crassispina on Kii Peninsula, southwestern Japan. J. Shellfish Res. 2009; 28: 939–946. Agatsuma Y, Sakai Y, Tajima K. Recent advances in seaurchin aquaculture in Japan. Bull. Aquacul. Assoc. Canada 2010; 108(1): 4–9. Agasuma Y, Toda N, Ogasawara M, Kinoshita J, Watanabe M, Matsui T, Inomata E. Growth and gonad development of the sea urchin Hemicentrotus pulcherrimus in an Eisenia kelp bed in the Oshika Peninsula, northern Japan. Zoosymposia 2012; 7: 225–230. Agatsuma Y, Watanabe M, Kinoshita J, Inomata E. Variability of carbon and nitrogen composition in body compartments of Strongylocentrotus nudus and Hemicentrotus pulcherrimus (Echinoidea, Echinodermata) associated with food availability. Cah. Biol. Mar. 2013; 54; 677–683. Akaike S, Kikuchi K, Monma H, Nozawa Y. Effects of adding nitrogen and phosphorus fertilizer on the growth of sporophytes of Laminaria ochotensis, Phaeophyta in the field. Aquculture Sci. 1998; 46: 57–65 (in Japanese with English abstract). Akaike S, Yoshida H, Matsuda T, Yagi H, Tomiyama M. Yearto-year variation of areas of macroalgal and crustose coralline algal communities interpreted from aerial photographs and SCUBA along the western coast of Shakotan Peninsula, Hokkaido. Sci. Rep. Hokkaido Fish. Exp. Stn. 1999; 56: 125–135 (in Japanese with English abstract). Akiyama T, Unuma T, Yamamoto T. Optimum protein level in a purified diet for young red sea urchin Pseudocentrotus depressus. Fish. Sci. 2001; 67: 361–363. Andrew NL, Choat JH. Habitat related differences in the survivorship and growth of juvenile sea urchins. Mar. Ecol. Prog. Ser. 1985; 27: 155–161. Andrew NL, MacDiarmid AB. Interrelationships between sea urchins and spiny lobsters in northeastern New Zealand. Mar. Ecol. Prog. Ser. 1991; 70: 211–222. Andrew NL, Underwood AJ. Density-dependent foraging in the sea urchin Centrostephanus rodgersii on shallow subtidal reefs in New South Wales, Australia. Mar. Ecol. Prog. Ser. 1993; 99: 89–98. Andrew NL, Agatsuma Y, Ballesteros E, Bazhin AG, Creaser EP, Barnes DKA, Botsford LW, Bradbury A, Campbell A, Dixon JD, Einarsson S, Gerring P, Hebert K, Hunter M, Hur SB, Johnson CR, Juinio-Meñez MA, Kalvass P, Miller RJ, Moreno CA, JPalleiro JS, Rivas D, Robinson SML, Schroeter SC, Steneck RS, Vadas RI, Woodby DA, Xiaoqi Z. Status and management of world sea urchin fisheries. Oceanogr. Mar. Biol. Annu. Rev. 2002; 40: 343–425. Arakawa H. Lethal effects on survival of zoospore and gametophyte of Eisenia bicyclis exerted by suspended particle and deposited sediment. Fish. Sci. 2005; 71: 133– 140. Arakawa H, Agatsuma Y. Influence of turbid seawater and seabed sediment on “Isoyake.” In: Taniguchi K, Agatsuma Y, Saga N (eds). Science and Restoration Technology of Marine Deforestation “Isoyake.” Kouseisha-kouseikaku, Tokyo. 2008; 81–92 (in Japanese). Arakawa H, Arai Y, Seto M, Morinaga T. Influences on survival of brown algal zoospore exerted by drifting particles. Fish. Sci. 2002; 68: 1893–1894. Ayling AM. The role of biological disturbance in temperate subtidal encrusting communities. Ecology 1981; 62: 830– 847. Balch T, Scheibling RE. Temporal and spatial variability in settlement and recruitment of echinoderms in kelp beds and barrens in Nova Scotia. Mar. Ecol. Prog. Ser. 2000; 205: 139–154. Balch T, Scheibling RE. Larval supply, settlement and recruitment in echinoderms. In: Lawrence JM, Jangoux M (eds). Echinoderm Studies Vol. 6. A.A. Balkema, Rotterdam. 2001; 1–83. Barker MF, Keogh JA, Lawrence JM, Lawrence AL. Feeding rate, absorption efficiencies, growth, and enhancement of gonad production in the New Zealand sea urchin Evechinus chloroticus Valenciennnes (Echinoidea: Echinometridae) fed prepared and natural diets. J. Shellfish Res. 1998; 17: 1583–1590. Bell JD, Rothlisberg PC, Munro JL, Loneragan NR, Nash WJ, Ward RD, Andrew NL. Restocking and Stock Enhancement of Marine Invertebrate Fisheries. Adv. Mar. Biol. 49, Academic Press, San Diego. 2005; 392 pp. Bernstein BB, Jung NC. Selective pressures and coevolution in a kelp canopy community in southern California. Ecol. Monogr. 1979; 49: 335–355. Biermann CH, Kessing BD, Palumbi SR. Phylogeny and development of marine model species: strongylocentrotid sea urchins. Evol. Dev. 2003; 5: 360–371. Bilcher ME, Rysgaard S, Sejr MK. Growth and production of the sea urchin in a high-Arctic fjord, and growth along a climatic gradient (64 to 77°N). Mar. Ecol. Prog. Ser. 2007; 341: 89–102. Brewin PE, Lamare MD, Keogh JA, Mladenov PV. Reproductive variability over a four-year period in the sea urchin Evechinus chloroticus (Echinoidea: Echinodermata) 72 Y. Agatsuma / Aqua-BioSci. Monogr. 7: 47–78, 2014 doi:10.5047/absm.2014.00702.0047 © 2014 TERRAPUB, Tokyo. All rights reserved. from differing habitats in New Zealand. Mar. Biol. 2000; 137: 543–557. Burkepile DE, Hay ME. Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 2006; 87: 3128–3139. Butman CA. Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr. Mar. Biol. Annu. Rev. 1987; 25: 113–165. Byrne M. Annual reproductive cycles of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Mar. Biol. 1990; 104: 275–289. Byrne M, Andrew NL, Worthington DG, Brett PA. Reproduction in the diadematoid sea urchin Centrostephanus rodgersii in contrasting habitats along the coast of New South Wales, Australia. Mar. Biol. 1998; 132: 305–318. Cameron RA, Schroeter SC. Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar. Ecol. Prog. Ser. 1980; 2: 243–247. Chapman ARO, Johnson CR. Disturbance and organization of macroalgal assemblages in the Northwest Atlantic. Hydrobiologia 1990; 192: 77–121. Chung HY, Ma WCJ, Ang PO, Kim JS, Chen F. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J. Agric. Food Chem. 2003; 51: 2619–2624. Cook EJ, Kelly MS. Effect of variation in the protein value of the red macroalga Palmaria palmata on the feeding, growth and gonad composition of the sea urchins Psammechinus miliaris and Paracentrotus lividus (Echinodermata). Aquaculture 2007; 270: 207–217. Coston-Clements L, Settle LR, Hoss DE, Cross FA. Utilization of the Sargassum habitat by marine invertebrates and vertebrates, a review. NOAA Technical Memorandum NMFSSEFSC-296, 1991; 32 pp. Daggett TL, Pearce CM, Tingley M, Robinson SMC, Chopin T. Effect of prepared and macroalgal diets and seed stock source on somatic growth of juvenile green sea urchins (Strongylocentrotus droebachiensis). Aquaculture 2005; 244: 263–281. Dawson EY, Neushul M, Wildman RD. New records of sublittoral marine plants from Pacific Baja California. Pac. Nat. 1960a; 1: 1–30. Dawson EY, Neushul M, Wildman RD. Seaweeds associated with kelp beds along southern California and northwestern Mexico. Pac. Nat. 1960b; 1: 1–81. Dayton PK. Experimental studies on algal-canopy interactions in a sea otter dominated kelp community at Amchitka Island, Alaska. Fish. Bull. (Wash. D.C.) 1975; 73: 230–","PeriodicalId":186355,"journal":{"name":"Aqua-bioscience Monographs","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aqua-bioscience Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5047/ABSM.2014.00702.0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
. Agatsuma Y, Matsuyama K, Nakata A, Kawai T, Nishikawa N. Marine algal succession on coralline flats after removal of sea urchins in Suttsu Bay on the Japan Sea coast of Hokkaido, Japan. Nippon Suisan Gakkaishi 1997; 63: 672– 680 (in Japanese with English abstract). Agatsuma Y, Nakao S, Motoya S, Tajima K, Miyamoto T. Relationship between year-to-year fluctuations in recruitment of juvenile sea urchins Strongylocentrotus nudus and seawater temperature in southwestern Hokkaido. Fish. Sci. 1998; 64: 1–5. Agatsuma Y, Nakata A, Matsuyama, K. Seasonal foraging activity of the sea urchin Strongylocentrotus nudus on coralline flats in Oshoro Bay in southwestern Hokkaido, Japan. Fish. Sci. 2000; 66: 198–203. Agatsuma Y, Yamada Y, Taniguchi K. Dietary effect of the Y. Agatsuma / Aqua-BioSci. Monogr. 7: 47–78, 2014 71 doi:10.5047/absm.2014.00702.0047 © 2014 TERRAPUB, Tokyo. All rights reserved. boiled stipe of brown alga Undaria pinnatifida on the growth and gonadal enhancement of the sea urchin Strongylocentrotus nudus. Fish. Sci. 2002; 68: 1274–1281. Agatsuma Y, Sakai Y, Andrew NL. Enhancement of Japan’s sea urchin fisheries. In: Lawrence JM, Guzmán O (eds). Sea Urchins: Fisheries and Ecology. DEStech Publication, Lancaster. 2004; 18–36. Agatsuma Y, Nakabayashi N, Miura N, Taniguchi K. Growth and gonad production of the sea urchin Hemicentrotus pulcherrimus in the fucoid bed and algal turf in northern Japan. Mar. Ecol. 2005a; 26: 100–109. Agatsuma Y, Sato M, Taniguchi K. Factors causing browncolored gonads of the sea urchin Strongylocentrotus nudus in northern Honshu, Japan. Aquaculture 2005b; 249: 449– 458. Agatsuma Y, Seki T, Kurata K, Taniguchi K. Instantaneous effect of dibromomethane on metamorphosis of larvae of the sea urchins Strongylocentrotus nudus and Strongylocentrotus intermedius. Aquaculture 2006a; 251: 549–557. Agatsuma Y, Yamada H, Taniguchi K. Distribution of the sea urchin Hemicentrotus pulcherrimus along a shallow bathymetric gradient in Onagawa Bay in northern Honshu, Japan. J. Shellfish Res. 2006b; 25: 1027–1036. Agatsuma Y, Endo Y, Taniguchi K. Inhibitory effect of 2,4dibromophenol and 2,4,6-tribromophenol on larval survival and metamorphosis of the sea urchin Strongylocentrotus nudus. Fish. Sci. 2008; 74: 837–841. Agatsuma Y, Hazama H, Arakawa H. Limited recovery of the kelp Eisenia bicyclis after population reduction of the sea urchin Hemicentrotus pulcherrimus and Anthocidaris crassispina on Kii Peninsula, southwestern Japan. J. Shellfish Res. 2009; 28: 939–946. Agatsuma Y, Sakai Y, Tajima K. Recent advances in seaurchin aquaculture in Japan. Bull. Aquacul. Assoc. Canada 2010; 108(1): 4–9. Agasuma Y, Toda N, Ogasawara M, Kinoshita J, Watanabe M, Matsui T, Inomata E. Growth and gonad development of the sea urchin Hemicentrotus pulcherrimus in an Eisenia kelp bed in the Oshika Peninsula, northern Japan. Zoosymposia 2012; 7: 225–230. Agatsuma Y, Watanabe M, Kinoshita J, Inomata E. Variability of carbon and nitrogen composition in body compartments of Strongylocentrotus nudus and Hemicentrotus pulcherrimus (Echinoidea, Echinodermata) associated with food availability. Cah. Biol. Mar. 2013; 54; 677–683. Akaike S, Kikuchi K, Monma H, Nozawa Y. Effects of adding nitrogen and phosphorus fertilizer on the growth of sporophytes of Laminaria ochotensis, Phaeophyta in the field. Aquculture Sci. 1998; 46: 57–65 (in Japanese with English abstract). Akaike S, Yoshida H, Matsuda T, Yagi H, Tomiyama M. Yearto-year variation of areas of macroalgal and crustose coralline algal communities interpreted from aerial photographs and SCUBA along the western coast of Shakotan Peninsula, Hokkaido. Sci. Rep. Hokkaido Fish. Exp. Stn. 1999; 56: 125–135 (in Japanese with English abstract). Akiyama T, Unuma T, Yamamoto T. Optimum protein level in a purified diet for young red sea urchin Pseudocentrotus depressus. Fish. Sci. 2001; 67: 361–363. Andrew NL, Choat JH. Habitat related differences in the survivorship and growth of juvenile sea urchins. Mar. Ecol. Prog. Ser. 1985; 27: 155–161. Andrew NL, MacDiarmid AB. Interrelationships between sea urchins and spiny lobsters in northeastern New Zealand. Mar. Ecol. Prog. Ser. 1991; 70: 211–222. Andrew NL, Underwood AJ. Density-dependent foraging in the sea urchin Centrostephanus rodgersii on shallow subtidal reefs in New South Wales, Australia. Mar. Ecol. Prog. Ser. 1993; 99: 89–98. Andrew NL, Agatsuma Y, Ballesteros E, Bazhin AG, Creaser EP, Barnes DKA, Botsford LW, Bradbury A, Campbell A, Dixon JD, Einarsson S, Gerring P, Hebert K, Hunter M, Hur SB, Johnson CR, Juinio-Meñez MA, Kalvass P, Miller RJ, Moreno CA, JPalleiro JS, Rivas D, Robinson SML, Schroeter SC, Steneck RS, Vadas RI, Woodby DA, Xiaoqi Z. Status and management of world sea urchin fisheries. Oceanogr. Mar. Biol. Annu. Rev. 2002; 40: 343–425. Arakawa H. Lethal effects on survival of zoospore and gametophyte of Eisenia bicyclis exerted by suspended particle and deposited sediment. Fish. Sci. 2005; 71: 133– 140. Arakawa H, Agatsuma Y. Influence of turbid seawater and seabed sediment on “Isoyake.” In: Taniguchi K, Agatsuma Y, Saga N (eds). Science and Restoration Technology of Marine Deforestation “Isoyake.” Kouseisha-kouseikaku, Tokyo. 2008; 81–92 (in Japanese). Arakawa H, Arai Y, Seto M, Morinaga T. Influences on survival of brown algal zoospore exerted by drifting particles. Fish. Sci. 2002; 68: 1893–1894. Ayling AM. The role of biological disturbance in temperate subtidal encrusting communities. Ecology 1981; 62: 830– 847. Balch T, Scheibling RE. Temporal and spatial variability in settlement and recruitment of echinoderms in kelp beds and barrens in Nova Scotia. Mar. Ecol. Prog. Ser. 2000; 205: 139–154. Balch T, Scheibling RE. Larval supply, settlement and recruitment in echinoderms. In: Lawrence JM, Jangoux M (eds). Echinoderm Studies Vol. 6. A.A. Balkema, Rotterdam. 2001; 1–83. Barker MF, Keogh JA, Lawrence JM, Lawrence AL. Feeding rate, absorption efficiencies, growth, and enhancement of gonad production in the New Zealand sea urchin Evechinus chloroticus Valenciennnes (Echinoidea: Echinometridae) fed prepared and natural diets. J. Shellfish Res. 1998; 17: 1583–1590. Bell JD, Rothlisberg PC, Munro JL, Loneragan NR, Nash WJ, Ward RD, Andrew NL. Restocking and Stock Enhancement of Marine Invertebrate Fisheries. Adv. Mar. Biol. 49, Academic Press, San Diego. 2005; 392 pp. Bernstein BB, Jung NC. Selective pressures and coevolution in a kelp canopy community in southern California. Ecol. Monogr. 1979; 49: 335–355. Biermann CH, Kessing BD, Palumbi SR. Phylogeny and development of marine model species: strongylocentrotid sea urchins. Evol. Dev. 2003; 5: 360–371. Bilcher ME, Rysgaard S, Sejr MK. Growth and production of the sea urchin in a high-Arctic fjord, and growth along a climatic gradient (64 to 77°N). Mar. Ecol. Prog. Ser. 2007; 341: 89–102. Brewin PE, Lamare MD, Keogh JA, Mladenov PV. Reproductive variability over a four-year period in the sea urchin Evechinus chloroticus (Echinoidea: Echinodermata) 72 Y. Agatsuma / Aqua-BioSci. Monogr. 7: 47–78, 2014 doi:10.5047/absm.2014.00702.0047 © 2014 TERRAPUB, Tokyo. All rights reserved. from differing habitats in New Zealand. Mar. Biol. 2000; 137: 543–557. Burkepile DE, Hay ME. Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 2006; 87: 3128–3139. Butman CA. Larval settlement of soft-sediment invertebrates: the spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr. Mar. Biol. Annu. Rev. 1987; 25: 113–165. Byrne M. Annual reproductive cycles of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Mar. Biol. 1990; 104: 275–289. Byrne M, Andrew NL, Worthington DG, Brett PA. Reproduction in the diadematoid sea urchin Centrostephanus rodgersii in contrasting habitats along the coast of New South Wales, Australia. Mar. Biol. 1998; 132: 305–318. Cameron RA, Schroeter SC. Sea urchin recruitment: effect of substrate selection on juvenile distribution. Mar. Ecol. Prog. Ser. 1980; 2: 243–247. Chapman ARO, Johnson CR. Disturbance and organization of macroalgal assemblages in the Northwest Atlantic. Hydrobiologia 1990; 192: 77–121. Chung HY, Ma WCJ, Ang PO, Kim JS, Chen F. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J. Agric. Food Chem. 2003; 51: 2619–2624. Cook EJ, Kelly MS. Effect of variation in the protein value of the red macroalga Palmaria palmata on the feeding, growth and gonad composition of the sea urchins Psammechinus miliaris and Paracentrotus lividus (Echinodermata). Aquaculture 2007; 270: 207–217. Coston-Clements L, Settle LR, Hoss DE, Cross FA. Utilization of the Sargassum habitat by marine invertebrates and vertebrates, a review. NOAA Technical Memorandum NMFSSEFSC-296, 1991; 32 pp. Daggett TL, Pearce CM, Tingley M, Robinson SMC, Chopin T. Effect of prepared and macroalgal diets and seed stock source on somatic growth of juvenile green sea urchins (Strongylocentrotus droebachiensis). Aquaculture 2005; 244: 263–281. Dawson EY, Neushul M, Wildman RD. New records of sublittoral marine plants from Pacific Baja California. Pac. Nat. 1960a; 1: 1–30. Dawson EY, Neushul M, Wildman RD. Seaweeds associated with kelp beds along southern California and northwestern Mexico. Pac. Nat. 1960b; 1: 1–81. Dayton PK. Experimental studies on algal-canopy interactions in a sea otter dominated kelp community at Amchitka Island, Alaska. Fish. Bull. (Wash. D.C.) 1975; 73: 230–
日本北部与海藻床变异相关的食用海胆种群动态
Arakawa H, Agatsuma Y.浑浊海水和海底沉积物对“等ake”的影响。In: Taniguchi K, Agatsuma Y, Saga N(主编)。海洋毁林“Isoyake”的科学与恢复技术日本,东京,2008;81-92(日语)。陈晓明,陈晓明,陈晓明,等。浮游颗粒对褐藻游动孢子存活的影响。鱼。Sci。2002;68: 1893 - 1894。艾林。温带潮下结壳群落中生物干扰的作用。生态1981;[62]: 830 - 847。王晓明,王晓明,王晓明,等。新斯科舍省海带床和荒滩中棘皮动物聚集和繁殖的时空变异。3月生态。掠夺。Ser。2000;205: 139 - 154。王晓明,王晓明。棘皮动物幼虫的分布、分布和繁殖。见:Lawrence JM, Jangoux M(编)。棘皮动物研究第6卷。A.A. Balkema,鹿特丹,2001;1 - 83。Barker MF, Keogh JA, Lawrence JM, Lawrence AL.配制和天然饲料对新西兰海胆摄食率、吸收效率、生长和性腺产量的影响。J.贝类,1998;17: 1583 - 1590。Bell JD, Rothlisberg PC, Munro JL, Loneragan NR, Nash WJ, Ward RD, Andrew NL。海洋无脊椎动物渔业的重新放养和增加种群。《生物科学》第49期,学术出版社,圣地亚哥,2005;392页,伯恩斯坦BB,荣格NC。南加州海带冠层群落的选择压力和共同进化。生态。Monogr。1979;49: 335 - 355。张建军,张建军,张建军,等。海洋模式物种的系统发育与演化:以海胆为例。另一个星球。Dev。2003;5: 360 - 371。Bilcher ME, Rysgaard S, Sejr MK.高北极峡湾海胆的生长和产量及其沿气候梯度(64 - 77°N)的生长。3月生态。掠夺。Ser。2007;341: 89 - 102。Brewin PE, Lamare MD, Keogh JA, Mladenov PV。绿斑海胆(Evechinus chloroticus) 4年生殖变异研究[j]。生物工程学报。7:47-78,2014 doi:10.5047/absm.2014.00702.0047©2014 TERRAPUB, Tokyo。版权所有。来自新西兰不同的栖息地。生物学报2000;137: 543 - 557。伯克皮尔德,海姆。草食动物与海洋初级生产者的营养控制:环境依赖效应。生态2006;87: 3128 - 3139。李建军。软沉积物无脊椎动物幼虫沉降:由主动生境选择和水动力过程的新作用解释的空间尺度。Oceanogr。3月的杂志。为基础。启1987;25日:113 - 165。来自爱尔兰西海岸暴露的潮间带和隐蔽的潮下栖息地的商业海胆的年繁殖周期。生物学报,1990;104: 275 - 289。Byrne M, Andrew NL, Worthington DG, Brett PA。澳大利亚新南威尔士州沿岸不同生境的双硬体海胆的繁殖。生物学报,1998;132: 305 - 318。王志强,王志强。海胆繁殖:基质选择对幼鱼分布的影响。3月生态。掠夺。Ser。1980;2: 243 - 247。西北大西洋大型藻群的扰动和组织。Hydrobiologia 1990;192: 77 - 121。钟海燕,马文俊,王宝,金继生,陈峰。香港褐藻(Padina arborescens, Sargassum siiliquastrum, loophora variegata)中溴酚的季节变化。j·阿格利司。食品化学。2003;51: 2619 - 2624。Cook EJ, Kelly MS.红色大藻Palmaria palmata蛋白值变化对沙棘海胆和棘皮海胆摄食、生长和性腺组成的影响。水产养殖2007;270: 207 - 217。Coston-Clements L, Settle LR, Hoss DE, Cross FA。海洋无脊椎动物和脊椎动物对马尾藻生境的利用研究进展NOAA技术备忘录NMFSSEFSC-296, 1991;32 pp. Daggett TL, Pearce CM, Tingley M, Robinson SMC, Chopin T.制备和大藻饲料及种子源对绿海胆幼鱼体生长的影响。水产养殖2005;244: 263 - 281。王晓东,王晓东,王晓东,等。下加利福尼亚太平洋海底植物的新记录。Pac. Nat. 1960;1:行。道森EY, Neushul M, Wildman RD。加利福尼亚南部和墨西哥西北部海带床上的海藻。Pac. Nat. 1960;1: 1 - 81。阿拉斯加州阿姆奇卡岛海獭主导的海藻群落中藻类与树冠相互作用的实验研究。鱼。公牛。(洗。华盛顿特区)1975;73: 230 -
本文章由计算机程序翻译,如有差异,请以英文原文为准。