SAR imaging with noise waveform and low sampling rate based on sparse optimization

Xiao Dong, Yunhua Zhang, W. Zhai, Xiang Gu, Xiaojin Shi, Xueyan Kang
{"title":"SAR imaging with noise waveform and low sampling rate based on sparse optimization","authors":"Xiao Dong, Yunhua Zhang, W. Zhai, Xiang Gu, Xiaojin Shi, Xueyan Kang","doi":"10.1109/IRS.2016.7497331","DOIUrl":null,"url":null,"abstract":"In this paper, we apply sparse optimization method to synthetic aperture radar (SAR) imaging on the airborne data of a Ku-band SAR using noise waveforms. The SAR system transmits chaotic pulse waveforms at three carrier frequencies (13.7GHz, 13.9GHz and 14.1GHz). Each frequency channel has a same bandwidth of 220MHz and the total bandwidth covered by the three channels is 620MHz. According to the compressed sensing (CS) theory and the randomness property of noise signal, we can uniformly down sample the echo data with a rate below the Nyquist sampling rate. Effects of low-rate sampling on noise radar imaging are discussed with simulated 1-D data presented. The reconstruction of SAR image from low-rate samples is based on our recently proposed maximum a posterior (MAP) estimation method, which is developed from the sparse optimization techniques in CS. Experimental results are presented to show the effectiveness of our algorithm.","PeriodicalId":346680,"journal":{"name":"2016 17th International Radar Symposium (IRS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRS.2016.7497331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply sparse optimization method to synthetic aperture radar (SAR) imaging on the airborne data of a Ku-band SAR using noise waveforms. The SAR system transmits chaotic pulse waveforms at three carrier frequencies (13.7GHz, 13.9GHz and 14.1GHz). Each frequency channel has a same bandwidth of 220MHz and the total bandwidth covered by the three channels is 620MHz. According to the compressed sensing (CS) theory and the randomness property of noise signal, we can uniformly down sample the echo data with a rate below the Nyquist sampling rate. Effects of low-rate sampling on noise radar imaging are discussed with simulated 1-D data presented. The reconstruction of SAR image from low-rate samples is based on our recently proposed maximum a posterior (MAP) estimation method, which is developed from the sparse optimization techniques in CS. Experimental results are presented to show the effectiveness of our algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏优化的噪声波形低采样率SAR成像
本文将稀疏优化方法应用于合成孔径雷达(SAR)对ku波段SAR机载数据的噪声波形成像。SAR系统在三个载波频率(13.7GHz、13.9GHz和14.1GHz)下传输混沌脉冲波形。每个信道的带宽相同,为220MHz,三个信道覆盖的总带宽为620MHz。根据压缩感知(CS)理论和噪声信号的随机性,可以以低于奈奎斯特采样率的速率对回波数据进行均匀下采样。利用模拟的一维数据,讨论了低采样率对噪声雷达成像的影响。低速率样本SAR图像的重建基于我们最近提出的最大后验(MAP)估计方法,该方法是从CS中的稀疏优化技术发展而来的。实验结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Doppler spectrum segmentation of radar sea clutter by mean-shift and information geometry metric Carrier- and Doppler-tunable FPGA-based active reflector for radar calibration Experimental measurement of time difference of arrival Investigation on radar-based applications for mini-UAS and MAVs Analysis of the objects images on the sea using Dempster-Shafer theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1