{"title":"Design of new research platform of telepresence telerobot system","authors":"Junjie Chen, Weiyi Huang, Aiguo Song","doi":"10.1109/ICIA.2005.1635064","DOIUrl":null,"url":null,"abstract":"A new design strategy for a research platform of a telepresence telerobot system based on virtual reality technology is put forward. The design frame of the system is simply described, and its important core techniques are described. An octrees data structure is utilized to build kinematic and dynamic modeling of the virtual simulation environment, Delphi+OpenGL+3DS MAX are adopted to carry through the virtual modeling and visible simulation exploitation of the slave-robot and its environment. Photo-correction is adopted to correct positioning deviation of the virtual geometric model and modeling errors. The cost of software and hardware equipment for the research platform realized is low. The master/slave robot (manipulator) system and all software in the system were designed and manufactured by our research group. The performance of the system has reached the level required for research. An indispensable experiment base is provided for the research of a telepresence telerobot system based on virtual reality technology.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A new design strategy for a research platform of a telepresence telerobot system based on virtual reality technology is put forward. The design frame of the system is simply described, and its important core techniques are described. An octrees data structure is utilized to build kinematic and dynamic modeling of the virtual simulation environment, Delphi+OpenGL+3DS MAX are adopted to carry through the virtual modeling and visible simulation exploitation of the slave-robot and its environment. Photo-correction is adopted to correct positioning deviation of the virtual geometric model and modeling errors. The cost of software and hardware equipment for the research platform realized is low. The master/slave robot (manipulator) system and all software in the system were designed and manufactured by our research group. The performance of the system has reached the level required for research. An indispensable experiment base is provided for the research of a telepresence telerobot system based on virtual reality technology.