CudaGIS: report on the design and realization of a massive data parallel GIS on GPUs

Jianting Zhang, Simin You
{"title":"CudaGIS: report on the design and realization of a massive data parallel GIS on GPUs","authors":"Jianting Zhang, Simin You","doi":"10.1145/2442968.2442981","DOIUrl":null,"url":null,"abstract":"We report the preliminary design and realization of a high-performance, general purposed, parallel GIS (CudaGIS), based on the General Purpose computing on Graphics Processing Units (GPGPU) technologies. Still under active developments, CudaGIS currently supports major types of geospatial data (point, polyline, polygon and raster) and provides modules for spatial indexing, spatial join and other types of geospatial operations on such geospatial data types. Experiments have demonstrated 10-40X on main-memory systems due to GPU accelerations and 1000-10000X speedups over serial CPU implementations and disk-resident systems by integrating additional performance boosting techniques, such as efficient in-memory data structures and algorithmic engineering.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442968.2442981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We report the preliminary design and realization of a high-performance, general purposed, parallel GIS (CudaGIS), based on the General Purpose computing on Graphics Processing Units (GPGPU) technologies. Still under active developments, CudaGIS currently supports major types of geospatial data (point, polyline, polygon and raster) and provides modules for spatial indexing, spatial join and other types of geospatial operations on such geospatial data types. Experiments have demonstrated 10-40X on main-memory systems due to GPU accelerations and 1000-10000X speedups over serial CPU implementations and disk-resident systems by integrating additional performance boosting techniques, such as efficient in-memory data structures and algorithmic engineering.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CudaGIS:基于gpu的海量数据并行GIS的设计与实现
我们报告了一个基于通用计算图形处理单元(GPGPU)技术的高性能、通用、并行GIS (CudaGIS)的初步设计和实现。CudaGIS目前仍在积极开发中,支持主要类型的地理空间数据(点、折线、多边形和栅格),并提供空间索引、空间连接和其他类型的地理空间操作模块。通过集成额外的性能提升技术(如高效的内存数据结构和算法工程),实验已经证明,由于GPU加速,主存系统的速度提高了10-40倍,而串行CPU实现和磁盘驻留系统的速度提高了1000-10000X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering spatial data streams for targeted alerting in disaster response ADTOS: arrival departure tradeoff optimization system Mining robust neighborhoods for quality control of sensor data EHSTC: an enhanced method for semantic trajectory compression Towards window stream queries over continuous phenomena
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1