Clustering NGN user behavior for anomaly detection

Claudio Mazzariello , Paolo De Lutiis , Dario Lombardo
{"title":"Clustering NGN user behavior for anomaly detection","authors":"Claudio Mazzariello ,&nbsp;Paolo De Lutiis ,&nbsp;Dario Lombardo","doi":"10.1016/j.istr.2010.10.011","DOIUrl":null,"url":null,"abstract":"<div><p>In the vision of both researchers and standardization committees, networks and services will evolve in the direction of increasing pervasiveness, convergence, and quality of service management capability. Consequently, users will gain an increasing dependency on the presence and availability of network connectivity and the huge plethora of provided services. Yet fostering the development of our society, such dependency on a relatively young technology poses serious threats, especially from the trustworthiness, security and privacy point of view. In this paper, we will describe and critically evaluate user behavior clustering aimed at monitoring and assuring the security of NGN-based applications. Different models of user behavior, developed within both ISP and academic research projects will be described, and several techniques for manipulating and exploiting such model for the anomaly detection purpose will be described and evaluated.</p></div>","PeriodicalId":100669,"journal":{"name":"Information Security Technical Report","volume":"16 1","pages":"Pages 20-28"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.istr.2010.10.011","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Security Technical Report","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1363412710000361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the vision of both researchers and standardization committees, networks and services will evolve in the direction of increasing pervasiveness, convergence, and quality of service management capability. Consequently, users will gain an increasing dependency on the presence and availability of network connectivity and the huge plethora of provided services. Yet fostering the development of our society, such dependency on a relatively young technology poses serious threats, especially from the trustworthiness, security and privacy point of view. In this paper, we will describe and critically evaluate user behavior clustering aimed at monitoring and assuring the security of NGN-based applications. Different models of user behavior, developed within both ISP and academic research projects will be described, and several techniques for manipulating and exploiting such model for the anomaly detection purpose will be described and evaluated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NGN用户行为聚类异常检测
在研究人员和标准化委员会的愿景中,网络和服务将朝着增加普遍性、融合性和服务管理能力质量的方向发展。因此,用户将越来越依赖于网络连接的存在和可用性以及所提供的大量服务。然而,促进我们社会的发展,这种对相对年轻的技术的依赖构成了严重的威胁,特别是从可信度,安全性和隐私的角度来看。在本文中,我们将描述和批判性地评估用户行为聚类,旨在监控和确保基于ngn的应用程序的安全性。在ISP和学术研究项目中开发的不同的用户行为模型将被描述,并且将描述和评估用于异常检测目的的操纵和利用这些模型的几种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing settings for social identity management on Social Networking Sites: Classification, current state, and proposed developments Toward web-based information security knowledge sharing Bridging the gap between role mining and role engineering via migration guides Semantic analysis of role mining results and shadowed roles detection On measuring the parasitic backscatter of sensor-enabled UHF RFID tags
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1