Realization of wearable sensors-based human activity recognition with an augmented feature group

Yan Wang, S. Cang, Hongnian Yu
{"title":"Realization of wearable sensors-based human activity recognition with an augmented feature group","authors":"Yan Wang, S. Cang, Hongnian Yu","doi":"10.1109/IConAC.2016.7604965","DOIUrl":null,"url":null,"abstract":"Feature extraction is a critical stage in human activity recognition. The information carried in features directly affects the classification performance. This paper explores a new group of features for activity recognition, which have not been broadly applied in previous works in this field. The newly introduced features are related to the attitude of the on-body devices, being extracted from both time-domain and frequency-domain. Based on the collected data, we implemented certain standard data mining techniques, e.g., the Minimum-Redundancy-Maximum-Relevance (mRMR) algorithm for feature selection, and Support Vector Machine (SVM) for classification, to evaluate the performance of the hypothesis. The comparison studies suggest the augmented features perform better than the commonly used features, giving a higher recognition accuracy of 93.46%. Exploring new features without adding more sensors, while improving the accuracy significantly, enables an efficient extraction of features from limited availability of sensors.","PeriodicalId":375052,"journal":{"name":"2016 22nd International Conference on Automation and Computing (ICAC)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConAC.2016.7604965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Feature extraction is a critical stage in human activity recognition. The information carried in features directly affects the classification performance. This paper explores a new group of features for activity recognition, which have not been broadly applied in previous works in this field. The newly introduced features are related to the attitude of the on-body devices, being extracted from both time-domain and frequency-domain. Based on the collected data, we implemented certain standard data mining techniques, e.g., the Minimum-Redundancy-Maximum-Relevance (mRMR) algorithm for feature selection, and Support Vector Machine (SVM) for classification, to evaluate the performance of the hypothesis. The comparison studies suggest the augmented features perform better than the commonly used features, giving a higher recognition accuracy of 93.46%. Exploring new features without adding more sensors, while improving the accuracy significantly, enables an efficient extraction of features from limited availability of sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可穿戴传感器的增强特征组人体活动识别的实现
特征提取是人体活动识别的关键环节。特征所携带的信息直接影响分类性能。本文探索了一组新的特征用于活动识别,这些特征在该领域以前的工作中没有得到广泛的应用。新引入的特征与体上器件的姿态有关,分别从时域和频域提取。基于收集到的数据,我们实现了一些标准的数据挖掘技术,例如,用于特征选择的最小冗余-最大相关性(mRMR)算法和用于分类的支持向量机(SVM),以评估假设的性能。对比研究表明,增强特征比常用特征表现更好,识别准确率达到93.46%。在不增加更多传感器的情况下探索新特征,同时显著提高精度,能够从有限的可用传感器中有效地提取特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of Partial Discharge emulators for the calibration of Free-Space radiometric measurements Knowledge representation of large medical data using XML An investigation of electrical motor parameters in a sensorless variable speed drive for machine fault diagnosis A novel fault-tolerant control strategy for Near Space Hypersonic Vehicles via Least Squares Support Vector Machine and Backstepping method Automatic text summarization using fuzzy inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1