Wafer-Level Test Path Pattern Recognition and Test Characteristics for Test-Induced Defect Diagnosis

Ken Chau-Cheung Cheng, Katherine Shu-Min Li, Andrew Yi-Ann Huang, Ji-Wei Li, L. Chen, Nova Cheng-Yen Tsai, Sying-Jyan Wang, Chen-Shiun Lee, Leon Chou, Peter Yi-Yu Liao, Hsing-Chung Liang, Jwu E. Chen
{"title":"Wafer-Level Test Path Pattern Recognition and Test Characteristics for Test-Induced Defect Diagnosis","authors":"Ken Chau-Cheung Cheng, Katherine Shu-Min Li, Andrew Yi-Ann Huang, Ji-Wei Li, L. Chen, Nova Cheng-Yen Tsai, Sying-Jyan Wang, Chen-Shiun Lee, Leon Chou, Peter Yi-Yu Liao, Hsing-Chung Liang, Jwu E. Chen","doi":"10.23919/DATE48585.2020.9116546","DOIUrl":null,"url":null,"abstract":"Wafer defect maps provide precious information of fabrication and test process defects, so they can be used as valuable sources to improve fabrication and test yield. This paper applies artificial intelligence based pattern recognition techniques to distinguish fab-induced defects from test-induced ones. As a result, test quality, reliability and yield could be improved accordingly. Wafer test data contain site-dependent information regarding test configurations in automatic test equipment, including effective load push force, gap between probe and load-board, probe tip size, probe-cleaning stress, etc. Our method analyzes both the test paths and site-dependent test characteristics to identify test-induced defects. Experimental results achieve 96.83% prediction accuracy of six NXP products, which show that our methods are both effective and efficient.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wafer defect maps provide precious information of fabrication and test process defects, so they can be used as valuable sources to improve fabrication and test yield. This paper applies artificial intelligence based pattern recognition techniques to distinguish fab-induced defects from test-induced ones. As a result, test quality, reliability and yield could be improved accordingly. Wafer test data contain site-dependent information regarding test configurations in automatic test equipment, including effective load push force, gap between probe and load-board, probe tip size, probe-cleaning stress, etc. Our method analyzes both the test paths and site-dependent test characteristics to identify test-induced defects. Experimental results achieve 96.83% prediction accuracy of six NXP products, which show that our methods are both effective and efficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于测试缺陷诊断的晶圆级测试路径模式识别与测试特性
晶圆缺陷图提供了制造和测试过程缺陷的宝贵信息,因此它们可以作为提高制造和测试良率的有价值的来源。本文应用基于人工智能的模式识别技术来区分晶圆厂缺陷和测试缺陷。从而提高测试质量、可靠性和良率。晶圆测试数据包含有关自动测试设备测试配置的现场相关信息,包括有效负载推力、探头与负载板之间的间隙、探头尖端尺寸、探头清洗应力等。我们的方法分析了测试路径和与站点相关的测试特征,以识别测试引起的缺陷。实验结果表明,对6种恩智浦产品的预测准确率达到96.83%,表明本文方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1