Machine learning techniques to build geometrical transformations for object matching a review

P. A. Jadhav, P. Chatur
{"title":"Machine learning techniques to build geometrical transformations for object matching a review","authors":"P. A. Jadhav, P. Chatur","doi":"10.1109/ICACCS.2016.7586381","DOIUrl":null,"url":null,"abstract":"Image matching or object matching is one of the cutting edge research fields in machine learning or computer vision domain. Whereas aim of image matching techniques is to build geometrical transformations over source image and target image, videos, real time moving object to extract similarity measure. Several research methods devised for image matching but efficiency of techniques is bounded with various parameters such as image rotation, speed, blurriness, quality etc., these parameters are important while understanding and devising robust image matching techniques. Study and analysis of image matching parameters is highly important while learning and understanding, predicting performance when time is a limiting factor for implementation. Several approaches have been presented to achieve efficiency over real time object matching. Now in this paper we have presented fundamentals of object matching based on geometrical transformation to match object. Comprehensive review of existing methods with analysis of image matching parameters is presented to determine the limitations of existing methods. This review also addresses comparative study of existing image matching techniques to generalize criteria for design of robust technique.","PeriodicalId":176803,"journal":{"name":"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS.2016.7586381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image matching or object matching is one of the cutting edge research fields in machine learning or computer vision domain. Whereas aim of image matching techniques is to build geometrical transformations over source image and target image, videos, real time moving object to extract similarity measure. Several research methods devised for image matching but efficiency of techniques is bounded with various parameters such as image rotation, speed, blurriness, quality etc., these parameters are important while understanding and devising robust image matching techniques. Study and analysis of image matching parameters is highly important while learning and understanding, predicting performance when time is a limiting factor for implementation. Several approaches have been presented to achieve efficiency over real time object matching. Now in this paper we have presented fundamentals of object matching based on geometrical transformation to match object. Comprehensive review of existing methods with analysis of image matching parameters is presented to determine the limitations of existing methods. This review also addresses comparative study of existing image matching techniques to generalize criteria for design of robust technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习技术,建立几何变换的对象匹配审查
图像匹配或目标匹配是机器学习或计算机视觉领域的前沿研究领域之一。而图像匹配技术的目的是对源图像和目标图像、视频、实时运动物体进行几何变换,提取相似测度。图像匹配的研究方法有很多,但技术的效率受到图像旋转、速度、模糊度、质量等参数的限制,这些参数对于理解和设计鲁棒图像匹配技术至关重要。研究和分析图像匹配参数对于学习和理解非常重要,当时间是实现的限制因素时,预测性能。为了提高实时目标匹配的效率,提出了几种方法。本文介绍了基于几何变换的目标匹配的基本原理。对现有方法进行了综合分析,并对图像匹配参数进行了分析,以确定现有方法的局限性。本文还讨论了现有图像匹配技术的比较研究,以推广鲁棒技术的设计标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of selfish Nodes in MANET - a survey Robust Sybil attack detection mechanism for Social Networks - a survey A comparative study of DFT and Moving Window Averaging technique of current differential protection on Transmission line Online review analytics using word alignment model on Twitter data Hybrid cryptography mechanism for securing self-organized wireless networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1