A generic database indexing framework for large-scale geographic knowledge graphs

Yuhan Sun, Mohamed Sarwat
{"title":"A generic database indexing framework for large-scale geographic knowledge graphs","authors":"Yuhan Sun, Mohamed Sarwat","doi":"10.1145/3274895.3274966","DOIUrl":null,"url":null,"abstract":"The paper proposes Riso-Tree, a generic indexing framework for geographic knowledge graphs. Riso-Tree enables fast execution of graph queries that involve spatial predicates (aka. GraSp). The proposed framework augments the classic R-Tree structure with pre-materialized sub-graph entries. Riso-Tree first partitions the graph into sub-graphs based on their connectivity to the spatial sub-regions. The proposed index allows for fast execution of GraSp queries by efficiently pruning the traversed vertexes/edges based upon the materialized sub-graph information. The experiments show that the proposed Riso-Tree achieves up to two orders magnitude faster execution time than its counterparts when executing GraSp queries on real knowledge graphs (e.g., WikiData).","PeriodicalId":325775,"journal":{"name":"Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274895.3274966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper proposes Riso-Tree, a generic indexing framework for geographic knowledge graphs. Riso-Tree enables fast execution of graph queries that involve spatial predicates (aka. GraSp). The proposed framework augments the classic R-Tree structure with pre-materialized sub-graph entries. Riso-Tree first partitions the graph into sub-graphs based on their connectivity to the spatial sub-regions. The proposed index allows for fast execution of GraSp queries by efficiently pruning the traversed vertexes/edges based upon the materialized sub-graph information. The experiments show that the proposed Riso-Tree achieves up to two orders magnitude faster execution time than its counterparts when executing GraSp queries on real knowledge graphs (e.g., WikiData).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型地理知识图谱的通用数据库索引框架
本文提出了地理知识图谱的通用索引框架Riso-Tree。Riso-Tree支持快速执行涉及空间谓词(也称为空间谓词)的图形查询。掌握)。提出的框架通过预物化子图条目增强了经典的R-Tree结构。Riso-Tree首先根据图与空间子区域的连通性将图划分为子图。建议的索引通过基于物化子图信息有效地修剪遍历的顶点/边,从而允许快速执行GraSp查询。实验表明,当对真实知识图(例如WikiData)执行GraSp查询时,所提出的Riso-Tree的执行时间比其对应的执行时间快了两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vision paper: reinforcement learning in smart spatio-temporal environments Mining spatio-temporal data for computing driver stress and observing its effects on driving behavior HiCaPS Volume-based similarity of linear features on terrains Dynamic spatio-temporal integration of traffic accident data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1