Predicting and modelling of nonstationary temporal signals with fractal characteristics

F. Mo, W. Kinsner
{"title":"Predicting and modelling of nonstationary temporal signals with fractal characteristics","authors":"F. Mo, W. Kinsner","doi":"10.1109/CCECE.1998.685563","DOIUrl":null,"url":null,"abstract":"This paper presents a scheme for predicting and modelling of nonstationary signals possessing fractal characteristics, using a resource-allocating network (RAN). One significant feature of a RAN is its ability to allocate resources corresponding to the complexity of nonstationary signals, thus tracking and matching the complexity of nonstationary signals can be achieved. The experimental results of predicting chaotic time series and short-term power load have shown RAN is suitable for modelling and predicting such nonstationary signals with the fundamental advantage of complexity matching and tracking capability.","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.685563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents a scheme for predicting and modelling of nonstationary signals possessing fractal characteristics, using a resource-allocating network (RAN). One significant feature of a RAN is its ability to allocate resources corresponding to the complexity of nonstationary signals, thus tracking and matching the complexity of nonstationary signals can be achieved. The experimental results of predicting chaotic time series and short-term power load have shown RAN is suitable for modelling and predicting such nonstationary signals with the fundamental advantage of complexity matching and tracking capability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有分形特征的非平稳时间信号的预测与建模
提出了一种利用资源分配网络(RAN)对具有分形特征的非平稳信号进行预测和建模的方案。RAN的一个重要特征是能够根据非平稳信号的复杂度分配相应的资源,从而实现对非平稳信号复杂度的跟踪和匹配。预测混沌时间序列和短期电力负荷的实验结果表明,RAN具有复杂性匹配和跟踪能力的基本优势,适用于此类非平稳信号的建模和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The use of ISDN signaling for real-time applications at homes and small businesses Multifractal analysis of DNA Multimedia courseware delivery over the Internet The VideoWriter: towards active paper for a natural user interface A performance based analysis of a robust flux controller for an induction motor drive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1