Topical Evolution and Regional Affinity of Tweets

Lipika Dey, Arpit Khurdiya, Diwakar Mahajan
{"title":"Topical Evolution and Regional Affinity of Tweets","authors":"Lipika Dey, Arpit Khurdiya, Diwakar Mahajan","doi":"10.1109/ISCBI.2013.66","DOIUrl":null,"url":null,"abstract":"Business organizations are increasingly showing interest in Twitter content to know their consumers. Tracking popular tags and trends give some idea about what people are talking about. However, in order to act on the knowledge acquired, they need more detailed information like regional variability in content, exact location of discontent if any, regional affinities and influences etc. In this work, we present methods to identify topics of discussion in tweets using a LDA-based approach, which can identify emerging or evolving topics. Regional analysis of topics can provide interesting business insights about consumer expectation or behavioural variations. Further, regional distribution of topics are analysed to identify clusters of regions that tend to behave similarly over extended periods of time.","PeriodicalId":311471,"journal":{"name":"2013 International Symposium on Computational and Business Intelligence","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Computational and Business Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCBI.2013.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Business organizations are increasingly showing interest in Twitter content to know their consumers. Tracking popular tags and trends give some idea about what people are talking about. However, in order to act on the knowledge acquired, they need more detailed information like regional variability in content, exact location of discontent if any, regional affinities and influences etc. In this work, we present methods to identify topics of discussion in tweets using a LDA-based approach, which can identify emerging or evolving topics. Regional analysis of topics can provide interesting business insights about consumer expectation or behavioural variations. Further, regional distribution of topics are analysed to identify clusters of regions that tend to behave similarly over extended periods of time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推文的话题演化与区域亲和力
商业组织越来越多地对Twitter内容感兴趣,以了解他们的消费者。跟踪流行标签和趋势可以让你了解人们在谈论什么。然而,为了根据所获得的知识采取行动,他们需要更详细的信息,如内容的区域差异、不满的确切位置(如果有的话)、区域亲和力和影响等。在这项工作中,我们提出了使用基于lda的方法来识别推文中讨论主题的方法,该方法可以识别新兴或发展中的主题。对主题的区域分析可以提供有关消费者期望或行为变化的有趣的商业见解。此外,还分析了主题的区域分布,以确定在较长时间内倾向于表现相似的区域集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Blocks' Signature in Cloud Computing Opinion Mining Using Frequent Pattern Growth Method from Unstructured Text Hybrid Algorithm for Line Planning Problem Clustering in User Information Retrieval on Web Implementation of File Transfer Using Message Transmission Optimization Mechanism (MTOM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1