A Qualitative Case Study of Relational Database Index Tuning Using Machine Learning

Mounicasri Valavala, Wasim Alhamdani
{"title":"A Qualitative Case Study of Relational Database Index Tuning Using Machine Learning","authors":"Mounicasri Valavala, Wasim Alhamdani","doi":"10.1109/I-SMAC52330.2021.9640843","DOIUrl":null,"url":null,"abstract":"Database performance is a critical factor in determining the application speed. Database indexing is a well- established technique to reduce the query response time, increasing the application speed. The research follows a qualitative analysis approach and aims to drive index tuning to be a dynamic and automated task using ML. This paper is part of the Automatic Index Tuning series and presents the data collection, analysis, and research findings for the index tuning module. The earlier papers in this series presented a literature review, methodology, and theoretical framework. The current paper explains the qualitative analysis process to standardize the parameters influencing the index tuning decision, paving a new path to make index tuning a dynamic and automated task. In addition, it will throw light on the pros and cons of using Machine Learning (ML) classification for index tuning.","PeriodicalId":178783,"journal":{"name":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC52330.2021.9640843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Database performance is a critical factor in determining the application speed. Database indexing is a well- established technique to reduce the query response time, increasing the application speed. The research follows a qualitative analysis approach and aims to drive index tuning to be a dynamic and automated task using ML. This paper is part of the Automatic Index Tuning series and presents the data collection, analysis, and research findings for the index tuning module. The earlier papers in this series presented a literature review, methodology, and theoretical framework. The current paper explains the qualitative analysis process to standardize the parameters influencing the index tuning decision, paving a new path to make index tuning a dynamic and automated task. In addition, it will throw light on the pros and cons of using Machine Learning (ML) classification for index tuning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的关系数据库索引调优的定性案例研究
数据库性能是决定应用程序速度的关键因素。数据库索引是一种成熟的技术,可以减少查询响应时间,提高应用程序的速度。该研究遵循定性分析方法,旨在使用ML将索引调优驱动为动态和自动化的任务。本文是自动索引调优系列的一部分,并介绍了索引调优模块的数据收集,分析和研究结果。本系列的早期论文介绍了文献综述、方法和理论框架。本文阐述了定性分析过程,以规范影响指标调优决策的参数,为实现指标调优的动态性和自动化任务开辟了新的道路。此外,它将阐明使用机器学习(ML)分类进行索引调优的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Modeling of Fast Face Recognition Against Age Disturbance under Deep Learning Design of IoT Network using Deep Learning-based Model for Anomaly Detection Analysis of the Impact of Blockchain and Net Technology on the Financial Governance of Internet Enterprises Affective Music Player for Multiple Emotion Recognition Using Facial Expressions with SVM A Deep Learning technology based covid-19 prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1