Local Neighborhood Reliability Weighted Support Vector Machine

Yunlong Gao, Yisong Zhang, Baihua Chen, Yuhui Xiong
{"title":"Local Neighborhood Reliability Weighted Support Vector Machine","authors":"Yunlong Gao, Yisong Zhang, Baihua Chen, Yuhui Xiong","doi":"10.1109/IAI50351.2020.9262215","DOIUrl":null,"url":null,"abstract":"Support vector machine (SVM) is a classification model, which learns the decision surface that maximizes the margin in the feature space. Such a decision surface has a good classification ability for unknown new samples. In real-world applications, the data set usually contains many noises and outliers, which will affect the learning of the decision surface, thus the maximum margin cannot be obtained, and the generalization ability of SVM will be reduced. In this paper, we introduce an adjacency factor to each input point to characterize the local neighbor relationship between each point. Weighting each sample point by the adjacency factor can let different sample points make different contributions to the learning of the decision surface. Thus, we can filter out the influence of noises and outliers on the decision surface by this weighting method. We propose this new method namely local neighborhood reliability weighted support vector machine (LN-SVM).","PeriodicalId":137183,"journal":{"name":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI50351.2020.9262215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Support vector machine (SVM) is a classification model, which learns the decision surface that maximizes the margin in the feature space. Such a decision surface has a good classification ability for unknown new samples. In real-world applications, the data set usually contains many noises and outliers, which will affect the learning of the decision surface, thus the maximum margin cannot be obtained, and the generalization ability of SVM will be reduced. In this paper, we introduce an adjacency factor to each input point to characterize the local neighbor relationship between each point. Weighting each sample point by the adjacency factor can let different sample points make different contributions to the learning of the decision surface. Thus, we can filter out the influence of noises and outliers on the decision surface by this weighting method. We propose this new method namely local neighborhood reliability weighted support vector machine (LN-SVM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部邻域可靠性加权支持向量机
支持向量机(Support vector machine, SVM)是一种分类模型,它学习在特征空间中使边界最大化的决策面。该决策面对未知的新样本具有很好的分类能力。在实际应用中,数据集通常包含许多噪声和离群值,这些噪声和离群值会影响决策面的学习,从而无法获得最大裕度,降低支持向量机的泛化能力。在本文中,我们为每个输入点引入邻接因子来表征每个输入点之间的局部邻接关系。用邻接系数对每个样本点进行加权,可以让不同的样本点对决策面的学习做出不同的贡献。因此,我们可以通过这种加权方法过滤掉决策面的噪声和异常值的影响。我们提出了一种新的方法,即局部邻域可靠性加权支持向量机(LN-SVM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasmatodea population evolution algorithm and its application in length-changeable incremental extreme learning machine An Intelligent Fault Classification Method Based on Data-Driven Stability Margin Real-time Wind Estimation with a Quadrotor using BP Neural Network Hybrid Neural Network Based on GRU with Uncertain Factors for Forecasting Ultra-short-term Wind Power Research on the mechanism and network model of China's public cultural service in the Internet Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1