Diversifying Product Review Rankings: Getting the Full Picture

Ralf Krestel, Nima Dokoohaki
{"title":"Diversifying Product Review Rankings: Getting the Full Picture","authors":"Ralf Krestel, Nima Dokoohaki","doi":"10.1109/WI-IAT.2011.33","DOIUrl":null,"url":null,"abstract":"E-commerce Web sites owe much of their popularity to consumer reviews provided together with product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to build confidence in products they are planning to buy. At the same time, popular products have thousands of user-generated reviews. Current approaches to present them to the user or recommend an individual review for a product are based on the helpfulness or usefulness of each review. In this paper we look at the top-k reviews in a ranking to give a good summary to the user with each review complementing the others. To this end we use Latent Dirichlet Allocation to detect latent topics within reviews and make use of the assigned star rating for the product as an indicator of the polarity expressed towards the product and the latent topics within the review. We present a framework to cover different ranking strategies based on theuser's need: Summarizing all reviews, focus on a particular latent topic, or focus on positive, negative or neutral aspects. We evaluated the system using manually annotated review data from a commercial review Web site.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

E-commerce Web sites owe much of their popularity to consumer reviews provided together with product descriptions. On-line customers spend hours and hours going through heaps of textual reviews to build confidence in products they are planning to buy. At the same time, popular products have thousands of user-generated reviews. Current approaches to present them to the user or recommend an individual review for a product are based on the helpfulness or usefulness of each review. In this paper we look at the top-k reviews in a ranking to give a good summary to the user with each review complementing the others. To this end we use Latent Dirichlet Allocation to detect latent topics within reviews and make use of the assigned star rating for the product as an indicator of the polarity expressed towards the product and the latent topics within the review. We present a framework to cover different ranking strategies based on theuser's need: Summarizing all reviews, focus on a particular latent topic, or focus on positive, negative or neutral aspects. We evaluated the system using manually annotated review data from a commercial review Web site.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多样化的产品评论排名:全面了解情况
电子商务网站的流行很大程度上要归功于消费者的评论和产品描述。在线消费者花费数小时阅读大量的文字评论,以建立对他们计划购买的产品的信心。与此同时,受欢迎的产品有成千上万的用户评论。当前向用户展示它们或推荐单个产品评论的方法是基于每个评论的帮助或有用性。在本文中,我们查看排名中的前k条评论,以便为用户提供一个很好的总结,每个评论都可以补充其他评论。为此,我们使用潜在狄利克雷分配来检测评论中的潜在主题,并利用分配给产品的星级评级作为对产品和评论中潜在主题表达的极性的指标。我们提出了一个框架来涵盖基于用户需求的不同排名策略:总结所有评论,关注特定潜在主题,或关注积极,消极或中性方面。我们使用来自商业评论网站的人工注释的评论数据来评估系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slovak Blog Clustering Enhanced by Mining the Web Comments Automatic Face Annotation in News Images by Mining the Web Exploiting Additional Dimensions as Virtual Items on Top-N Recommender Systems Supporting Agent Systems in the Programming Language A Software Agent Framework for Exploiting Demand-Side Consumer Social Networks in Power Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1