Sarah A. Obead, Hsuan-Yin Lin, E. Rosnes, J. Kliewer
{"title":"On the Capacity of Private Nonlinear Computation for Replicated Databases","authors":"Sarah A. Obead, Hsuan-Yin Lin, E. Rosnes, J. Kliewer","doi":"10.1109/ITW44776.2019.8989267","DOIUrl":null,"url":null,"abstract":"We consider the problem of private computation (PC) in a distributed storage system. In such a setting a user wishes to compute a function of f messages replicated across n noncolluding databases, while revealing no information about the desired function to the databases. We provide an information-theoretically accurate achievable PC rate, which is the ratio of the smallest desired amount of information and the total amount of downloaded information, for the scenario of nonlinear computation. For a large message size the rate equals the PC capacity, i.e., the maximum achievable PC rate, when the candidate functions are the f independent messages and one arbitrary nonlinear function of these. When the number of messages grows, the PC rate approaches an outer bound on the PC capacity. As a special case, we consider private monomial computation (PMC) and numerically compare the achievable PMC rate to the outer bound for a finite number of messages.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider the problem of private computation (PC) in a distributed storage system. In such a setting a user wishes to compute a function of f messages replicated across n noncolluding databases, while revealing no information about the desired function to the databases. We provide an information-theoretically accurate achievable PC rate, which is the ratio of the smallest desired amount of information and the total amount of downloaded information, for the scenario of nonlinear computation. For a large message size the rate equals the PC capacity, i.e., the maximum achievable PC rate, when the candidate functions are the f independent messages and one arbitrary nonlinear function of these. When the number of messages grows, the PC rate approaches an outer bound on the PC capacity. As a special case, we consider private monomial computation (PMC) and numerically compare the achievable PMC rate to the outer bound for a finite number of messages.