A Hybrid of Deep Sentence Representation and Local Feature Representation Model for Question Answer Selection

Dongge Tang, Wenge Rong, Libin Shi, Haodong Yang, Zhang Xiong
{"title":"A Hybrid of Deep Sentence Representation and Local Feature Representation Model for Question Answer Selection","authors":"Dongge Tang, Wenge Rong, Libin Shi, Haodong Yang, Zhang Xiong","doi":"10.1109/CYBERC.2018.00057","DOIUrl":null,"url":null,"abstract":"Answer selection is a one of the critical tasks in natural lan-guage processing area and it is helpful in many practical applications. To better tackle this problem, the first challenge is to effectively extract the sentence information. In this research, we propose an advanced Re-Read-CNN model which can learn a deep sentence representation and meanwhile combine the local feature representation. The experiment results on commonly used datasets have shown its effectiveness and potential for answer selection.","PeriodicalId":282903,"journal":{"name":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2018.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Answer selection is a one of the critical tasks in natural lan-guage processing area and it is helpful in many practical applications. To better tackle this problem, the first challenge is to effectively extract the sentence information. In this research, we propose an advanced Re-Read-CNN model which can learn a deep sentence representation and meanwhile combine the local feature representation. The experiment results on commonly used datasets have shown its effectiveness and potential for answer selection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度句子表示和局部特征表示的混合问答选择模型
答案选择是自然语言处理领域的关键任务之一,具有广泛的应用价值。为了更好地解决这个问题,第一个挑战是有效地提取句子信息。在本研究中,我们提出了一种先进的Re-Read-CNN模型,该模型可以学习深度句子表示,同时结合局部特征表示。在常用数据集上的实验结果表明了该方法在答案选择方面的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Fusion VIA Optimized KECA with Application to Audio Emotion Recognition Application Research of YOLO v2 Combined with Color Identification Decentralized Cross-Layer Optimization for Energy-Efficient Resource Allocation in HetNets A Smart QoE Aware Network Selection Solution for IoT Systems in HetNets Based 5G Scenarios Improving Word Representation with Word Pair Distributional Asymmetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1