High-throughput dual-shift stochastic-detection quasi-cyclic LDPC decoder

M. Lim, W. Goh
{"title":"High-throughput dual-shift stochastic-detection quasi-cyclic LDPC decoder","authors":"M. Lim, W. Goh","doi":"10.1109/ICICS.2013.6782970","DOIUrl":null,"url":null,"abstract":"Driven by its renowned near-capacity performance over a wide spectrum of channels, the capitalization of quasi-cyclic low-density parity-check (QC-LDPC) codes is irrefutably the focal point of research and solution to virtually all communication systems of the next generation. Steered towards non-volatile memory (NVM) storage applications, we introduce a modernistic approach to LDPC decoding in this paper, known as the dual-shift stochastic-detection (DSSD). Weaving two novel ideas: dual-shift cyclic generation and stochastic-detection of local minima, our proposed DSSD decoder achieves throughput gains (~ 300%) by minimizing its overall computational delay and maximizing its operational frequency. Along with the amalgamation of our spearheading mirror-paradigm, the DSSD QC-LDPC decoder acquires yet another dimension of gain in throughput while relinquishing a cluster of its address generation counters, which elicits a wide expanse for its application.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Driven by its renowned near-capacity performance over a wide spectrum of channels, the capitalization of quasi-cyclic low-density parity-check (QC-LDPC) codes is irrefutably the focal point of research and solution to virtually all communication systems of the next generation. Steered towards non-volatile memory (NVM) storage applications, we introduce a modernistic approach to LDPC decoding in this paper, known as the dual-shift stochastic-detection (DSSD). Weaving two novel ideas: dual-shift cyclic generation and stochastic-detection of local minima, our proposed DSSD decoder achieves throughput gains (~ 300%) by minimizing its overall computational delay and maximizing its operational frequency. Along with the amalgamation of our spearheading mirror-paradigm, the DSSD QC-LDPC decoder acquires yet another dimension of gain in throughput while relinquishing a cluster of its address generation counters, which elicits a wide expanse for its application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高吞吐量双移随机检测准循环LDPC解码器
准循环低密度奇偶校验(QC-LDPC)码在广泛的信道范围内具有著名的近容量性能,因此,准循环低密度奇偶校验(QC-LDPC)码的应用无疑是下一代通信系统研究和解决方案的焦点。针对非易失性存储器(NVM)存储应用,我们在本文中引入了一种现代的LDPC解码方法,称为双移位随机检测(DSSD)。我们提出的DSSD解码器通过最小化其总体计算延迟和最大化其工作频率来实现吞吐量增益(~ 300%),从而编织了两个新颖的思想:双移位循环生成和局部最小值的随机检测。随着我们的先锋镜像范式的合并,DSSD QC-LDPC解码器在放弃其地址生成计数器集群的同时获得了吞吐量的另一个维度的增益,这引发了其应用的广泛扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cubic-based 3-D localization for wireless sensor networks Using PCA algorithm to refine the results of internet traffic identification Recognizing trees at a distance with discriminative deep feature learning A random increasing sequence hash chain and smart card-based remote user authentication scheme Two dimension nonnegative partial least squares for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1