Round gating for low energy block ciphers

S. Banik, A. Bogdanov, F. Regazzoni, Takanori Isobe, Harunaga Hiwatari, T. Akishita
{"title":"Round gating for low energy block ciphers","authors":"S. Banik, A. Bogdanov, F. Regazzoni, Takanori Isobe, Harunaga Hiwatari, T. Akishita","doi":"10.1109/HST.2016.7495556","DOIUrl":null,"url":null,"abstract":"Pushed by the pervasive diffusion of devices operated by battery or by the energy harvested, energy has become one of the most important parameter to be optimized for embedded systems. Particularly relevant would be to optimize the energy consumption of security primitives. In this paper we explore design techniques for implementing block ciphers in a low energy fashion. We concentrate on round based implementation and we discuss how gating, applied at round level can affect and improve the energy consumption of the most common lightweight block cipher currently used in the internet of things. Additionally, we discuss how to needed gating wave can be generated. Experimental results show that our technique is able to reduce the energy consumption in most block ciphers by over 60% while incurring only a minimal overhead in hardware.","PeriodicalId":194799,"journal":{"name":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Hardware Oriented Security and Trust (HOST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HST.2016.7495556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Pushed by the pervasive diffusion of devices operated by battery or by the energy harvested, energy has become one of the most important parameter to be optimized for embedded systems. Particularly relevant would be to optimize the energy consumption of security primitives. In this paper we explore design techniques for implementing block ciphers in a low energy fashion. We concentrate on round based implementation and we discuss how gating, applied at round level can affect and improve the energy consumption of the most common lightweight block cipher currently used in the internet of things. Additionally, we discuss how to needed gating wave can be generated. Experimental results show that our technique is able to reduce the energy consumption in most block ciphers by over 60% while incurring only a minimal overhead in hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低能量分组密码的圆形门控
随着电池供电或能量采集设备的普及,能量已成为嵌入式系统需要优化的最重要参数之一。特别相关的是优化安全原语的能耗。在本文中,我们探讨了以低能量方式实现分组密码的设计技术。我们专注于基于轮的实现,并讨论了在轮级应用的门控如何影响和改善目前在物联网中使用的最常见的轻量级分组密码的能耗。此外,我们还讨论了如何产生所需的门控波。实验结果表明,我们的技术能够将大多数分组密码的能耗降低60%以上,同时只产生最小的硬件开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SDSM: Fast and scalable security support for directory-based distributed shared memory Granularity and detection capability of an adaptive embedded Hardware Trojan detection system Adaptive real-time Trojan detection framework through machine learning Parsimonious design strategy for linear layers with high diffusion in block ciphers Hardware security risk assessment: A case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1