Review of Graph Neural Network in Text Classification

Masoud Malekzadeh, P. Hajibabaee, Maryam Heidari, Samira Zad, Özlem Uzuner, James H. Jones
{"title":"Review of Graph Neural Network in Text Classification","authors":"Masoud Malekzadeh, P. Hajibabaee, Maryam Heidari, Samira Zad, Özlem Uzuner, James H. Jones","doi":"10.1109/uemcon53757.2021.9666633","DOIUrl":null,"url":null,"abstract":"Text classification is one of the fundamental problems in Natural Language Processing (NLP). Several research studies have used deep learning approaches such as Convolution Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification. Over the past decade, graph-based approaches have been used to solve various NLP tasks including text classification. This paper reviews the most recent state-of-the-art graph-based text classification, datasets, and performance evaluations versus baseline models.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/uemcon53757.2021.9666633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Text classification is one of the fundamental problems in Natural Language Processing (NLP). Several research studies have used deep learning approaches such as Convolution Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) for text classification. Over the past decade, graph-based approaches have been used to solve various NLP tasks including text classification. This paper reviews the most recent state-of-the-art graph-based text classification, datasets, and performance evaluations versus baseline models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图神经网络在文本分类中的研究进展
文本分类是自然语言处理(NLP)的基本问题之一。一些研究已经使用深度学习方法,如卷积神经网络(cnn)和循环神经网络(rnn)进行文本分类。在过去的十年中,基于图的方法已被用于解决各种NLP任务,包括文本分类。本文回顾了最新的基于图形的文本分类、数据集以及与基线模型的性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy-Aware Task Migration Through Ant-Colony Optimization for Multiprocessors A Personalized Virtual Learning Environment Using Multiple Modeling Techniques Development of Security System for Ready Made Garments (RMG) Industry in Bangladesh Design of an IoT Based Gas Wastage Monitoring, Leakage Detecting and Alerting System Artificial intelligence (AI) to study self-discharge batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1