Spin-lock synchronization on the Butterfly and KSR1

Xiaodong Zhang, R. Castañeda, E. Chan
{"title":"Spin-lock synchronization on the Butterfly and KSR1","authors":"Xiaodong Zhang, R. Castañeda, E. Chan","doi":"10.1109/88.281875","DOIUrl":null,"url":null,"abstract":"The drawbacks of the simple spin-lock limit its effective use to small critical sections. Applications with large critical sections and a large number of processors require more efficient algorithms to minimize processor and network overheads. Variations on the spin-lock have been tested on the Sequent Symmetry, a bus-based shared-memory multiprocessor. Algorithms for scalable synchronization have also been tested on the BBN Butterfly I, a large-scale shared-memory multiprocessor with a multistage interconnection network(MIN). We have extended the investigation to the BBN GP1000 and TC2000, both MIN-based multiprocessors with network contention heavier than that on the Butterfly I. We have also implemented algorithms on Kendall Square Research's KSR1, a hierarchical-ring multiprocessor system, to study the effects of cache coherence. The execution behavior of spin-lock algorithms is significantly different between MIN-based and HR-based architectures. Our tests suggest that HR-based architectures handle network and memory contention more efficiently than MIN-based architectures. However, our results also suggest how spin-locks can be made cost-effective on both.<<ETX>>","PeriodicalId":325213,"journal":{"name":"IEEE Parallel & Distributed Technology: Systems & Applications","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Parallel & Distributed Technology: Systems & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/88.281875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The drawbacks of the simple spin-lock limit its effective use to small critical sections. Applications with large critical sections and a large number of processors require more efficient algorithms to minimize processor and network overheads. Variations on the spin-lock have been tested on the Sequent Symmetry, a bus-based shared-memory multiprocessor. Algorithms for scalable synchronization have also been tested on the BBN Butterfly I, a large-scale shared-memory multiprocessor with a multistage interconnection network(MIN). We have extended the investigation to the BBN GP1000 and TC2000, both MIN-based multiprocessors with network contention heavier than that on the Butterfly I. We have also implemented algorithms on Kendall Square Research's KSR1, a hierarchical-ring multiprocessor system, to study the effects of cache coherence. The execution behavior of spin-lock algorithms is significantly different between MIN-based and HR-based architectures. Our tests suggest that HR-based architectures handle network and memory contention more efficiently than MIN-based architectures. However, our results also suggest how spin-locks can be made cost-effective on both.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蝴蝶和KSR1的自旋锁定同步
简单自旋锁的缺点限制了它在小临界截面上的有效使用。具有大临界区和大量处理器的应用程序需要更有效的算法来最小化处理器和网络开销。在基于总线的共享内存多处理器sequential Symmetry上测试了自旋锁的变化。可扩展同步算法也在BBN Butterfly I上进行了测试,这是一种具有多级互连网络(MIN)的大型共享内存多处理器。我们将研究扩展到BBN GP1000和TC2000,这两种基于mini的多处理器的网络争用比Butterfly i更严重。我们还在Kendall Square Research的KSR1(一个分层环多处理器系统)上实现了算法,以研究缓存一致性的影响。自旋锁算法的执行行为在基于min和基于hr的体系结构之间存在显著差异。我们的测试表明,基于hr的架构比基于min的架构更有效地处理网络和内存争用。然而,我们的结果也提示了如何使自旋锁在两者上都具有成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Unified Trace Environment for IBM SP systems Integrating personal computers in a distributed client-server environment Index, volume 4, 1996 Fault-tolerant computer system design Topics in advanced scientific computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1