Detecting and Analyzing Flight Unstable Approaches with QAR Big Data

Chen Wu, Huabo Sun, Yang Jiao, Jiayi Xie, Binbin Lu
{"title":"Detecting and Analyzing Flight Unstable Approaches with QAR Big Data","authors":"Chen Wu, Huabo Sun, Yang Jiao, Jiayi Xie, Binbin Lu","doi":"10.1109/GEOINFORMATICS.2018.8557146","DOIUrl":null,"url":null,"abstract":"Stable approach is vital for flight safety, and unstable approach is one of the main causes of flight accidents. This study aims to detect flight unstable approaches (FUA) with the quick access recorder (QAR) big data, and analyze the spatio-temporal patterns via exploratory data analysis (EDA) technologies. Results show that the dominant factor of FUA incidents is overrun of airspeed. FUA incidents occurred the most frequently in Shanghai, especially on January 8th and 23th. With combining the meteorological data, we found that the FUA incidents closely relate to weather of spatially varying effects. These findings make practical senses in preventing FUA incidents and safeguarding flights.","PeriodicalId":142380,"journal":{"name":"2018 26th International Conference on Geoinformatics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEOINFORMATICS.2018.8557146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Stable approach is vital for flight safety, and unstable approach is one of the main causes of flight accidents. This study aims to detect flight unstable approaches (FUA) with the quick access recorder (QAR) big data, and analyze the spatio-temporal patterns via exploratory data analysis (EDA) technologies. Results show that the dominant factor of FUA incidents is overrun of airspeed. FUA incidents occurred the most frequently in Shanghai, especially on January 8th and 23th. With combining the meteorological data, we found that the FUA incidents closely relate to weather of spatially varying effects. These findings make practical senses in preventing FUA incidents and safeguarding flights.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于QAR大数据的飞行不稳定进近探测与分析
稳定进近对飞行安全至关重要,而不稳定进近是造成飞行事故的主要原因之一。利用快速存取记录仪(QAR)大数据检测飞行不稳定进近(FUA),并利用探索性数据分析(EDA)技术分析飞行不稳定进近的时空模式。结果表明,飞机失稳事故的主导因素是空速超限。FUA事件在上海发生的频率最高,特别是在1月8日和23日。结合气象资料,发现FUA事件与具有空间变化效应的天气密切相关。这些发现对预防飞行事故和保障飞行安全具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on Dynamic Evaluation of Urban Community Livability Based on Multi-Source Spatio-Temporal Data Hotspots Trends and Spatio-Temporal Distributions for an Investigative in the Field of Chinese Educational Technology Congestion Detection and Distribution Pattern Analysis Based on Spatiotemporal Density Clustering Spatial and Temporal Analysis of Educational Development in Yunnan on the Last Two Decades A Top-Down Application of Multi-Resolution Markov Random Fields with Bilateral Information in Semantic Segmentation of Remote Sensing Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1