Classification of Review Text using Hybrid Convolutional Neural Network and Gated Recurrent Unit Methods

Fiqih Fathor Rachim, A. Damayanti, E. Winarko
{"title":"Classification of Review Text using Hybrid Convolutional Neural Network and Gated Recurrent Unit Methods","authors":"Fiqih Fathor Rachim, A. Damayanti, E. Winarko","doi":"10.20473/conmatha.v4i2.38262","DOIUrl":null,"url":null,"abstract":"Consumer reviews are opinions from buyers to sellers based on service satisfaction or product quality. The more consumer reviews cause the process of analyzing manually will be difficult. Therefore, an automated sentiment analysis system is needed. Each review will be grouped into a sentiment class which is divided into positive and negative classes. This study aims to classify review texts using the Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) methods. The research stages in this study include collecting data on Tokopedia review texts, extracting hidden information from review texts using CNN, conducting learning on review texts using GRU. A total of 1000 review texts were divided into 80% training data and 20% test data. The review text is converted into matrix using One Hot Encoding algorithm and then extracted using CNN. The CNN process includes the convolution calculation, the calculation of the Rectified Linear Unit (ReLU) activation function, and the pooling stage. The extraction results in the CNN process are continued in the GRU process. The GRU process includes initializing parameters, GRU feed forward, Cross-Entropy Error calculation, GRU feedback, and updating weights and biases. The optimal weight is obtained when the error value in the training is less than the expected minimum error or the training iteration has reached the specified maximum iteration. Optimal weight is used for validation test on test data. The implementation of review text classification using the hybrid Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) method was made using the python programming language. The accuracy of the validation test is 88.5%","PeriodicalId":119993,"journal":{"name":"Contemporary Mathematics and Applications (ConMathA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics and Applications (ConMathA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20473/conmatha.v4i2.38262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consumer reviews are opinions from buyers to sellers based on service satisfaction or product quality. The more consumer reviews cause the process of analyzing manually will be difficult. Therefore, an automated sentiment analysis system is needed. Each review will be grouped into a sentiment class which is divided into positive and negative classes. This study aims to classify review texts using the Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) methods. The research stages in this study include collecting data on Tokopedia review texts, extracting hidden information from review texts using CNN, conducting learning on review texts using GRU. A total of 1000 review texts were divided into 80% training data and 20% test data. The review text is converted into matrix using One Hot Encoding algorithm and then extracted using CNN. The CNN process includes the convolution calculation, the calculation of the Rectified Linear Unit (ReLU) activation function, and the pooling stage. The extraction results in the CNN process are continued in the GRU process. The GRU process includes initializing parameters, GRU feed forward, Cross-Entropy Error calculation, GRU feedback, and updating weights and biases. The optimal weight is obtained when the error value in the training is less than the expected minimum error or the training iteration has reached the specified maximum iteration. Optimal weight is used for validation test on test data. The implementation of review text classification using the hybrid Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) method was made using the python programming language. The accuracy of the validation test is 88.5%
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合卷积神经网络和门控循环单元方法的评论文本分类
消费者评论是买家对卖家基于服务满意度或产品质量的意见。用户评论越多,手动分析的过程就越困难。因此,需要一个自动化的情感分析系统。每个评论将被分组到一个情绪类中,分为积极类和消极类。本研究旨在使用卷积神经网络(CNN)和门控循环单元(GRU)方法对评论文本进行分类。本研究的研究阶段包括收集Tokopedia复习文本的数据,使用CNN提取复习文本中的隐藏信息,使用GRU对复习文本进行学习。1000篇复习文本被分成80%的训练数据和20%的测试数据。使用One Hot Encoding算法将评论文本转换成矩阵,然后使用CNN进行提取。CNN过程包括卷积计算、ReLU (Rectified Linear Unit)激活函数的计算和池化阶段。在GRU过程中延续了CNN过程中的提取结果。GRU过程包括初始化参数、GRU前馈、交叉熵误差计算、GRU反馈以及权重和偏差的更新。当训练中的误差值小于期望的最小误差或训练迭代达到指定的最大迭代时,获得最优权值。采用最优权值对试验数据进行验证试验。使用python编程语言实现了基于卷积神经网络(CNN)和门控循环单元(GRU)混合方法的评论文本分类。验证试验的准确度为88.5%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Triple-Seasonal ARIMA Untuk Peramalan Data Konsumsi Beban Listrik Simulasi Numerik Model Arus Lalu Lintas dengan Pengaruh Kepadatan Kendaraan dan Kondisi Jalan Tentang Rumus Induksi Matematika Desain dan Implementasi Perangkat Lunak Untuk Abstraksi Berhingga Sistem Max-Plus-Linear dengan Tree Tanpa Fungsi Rekursif Mathematical Modeling Of Household Plastic Waste Distribution Management With Transportation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1