Unbalanced non-binary tree-structured vector quantizers

T. Schmidl, P. Cosman, R. Gray
{"title":"Unbalanced non-binary tree-structured vector quantizers","authors":"T. Schmidl, P. Cosman, R. Gray","doi":"10.1109/ACSSC.1993.342359","DOIUrl":null,"url":null,"abstract":"An established method for developing unbalanced binary tree-structured vector quantizers is greedy growing followed by optimal pruning. These algorithms can be extended to a hybrid binary/quaternary tree structure or to a pure quaternary tree structure. The trade-off of decreased distortion for increased rate is examined for the split into two or four children at each terminal node. The trees employing quaternary splits have smaller memory requirements for the codebook and provide slightly lower mean-squared-error on the test sequence as compared to a binary tree.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An established method for developing unbalanced binary tree-structured vector quantizers is greedy growing followed by optimal pruning. These algorithms can be extended to a hybrid binary/quaternary tree structure or to a pure quaternary tree structure. The trade-off of decreased distortion for increased rate is examined for the split into two or four children at each terminal node. The trees employing quaternary splits have smaller memory requirements for the codebook and provide slightly lower mean-squared-error on the test sequence as compared to a binary tree.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非平衡非二叉树结构矢量量化器
一种开发非平衡二叉树结构矢量量化器的方法是先贪婪生长后最优剪枝。这些算法可以扩展到混合二叉/四元树结构或纯四元树结构。在每个终端节点分裂成两个或四个子节点时,检查了减少失真以增加速率的权衡。与二叉树相比,采用四元分割的树对码本的内存要求更小,并且在测试序列上提供略低的均方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating error diffusion kernel from error diffused images Optical-to-SAR image registration using the active contour model Efficient organization of large ship radar databases using wavelets and structured vector quantization Signal processing using the generalized Taylor series expansion Evaluation of a model based data fusion algorithm with multi-mode OTHR data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1