Downstream transformer generation of question-answer pairs with preprocessing and postprocessing pipelines

Cheng Zhang, Hao Zhang, Jie Wang
{"title":"Downstream transformer generation of question-answer pairs with preprocessing and postprocessing pipelines","authors":"Cheng Zhang, Hao Zhang, Jie Wang","doi":"10.1145/3558100.3563846","DOIUrl":null,"url":null,"abstract":"We present a method to perform a downstream task of transformers on generating question-answer pairs (QAPs) from a given article. We first finetune pretrained transformers on QAP datasets. We then use a preprocessing pipeline to select appropriate answers from the article, and feed each answer and the relevant context to the finetuned transformer to generate a candidate QAP. Finally we use a postprocessing pipeline to filter inadequate QAPs. In particular, using pretrained T5 models as transformers and the SQuAD dataset as the finetruning dataset, we obtain a finetuned T5 model that outperforms previous models on standard performance measures over the SQuAD dataset. We then show that our method based on this finetuned model generates a satisfactory number of QAPs with high qualities on the Gaokao-EN dataset assessed by human judges.","PeriodicalId":146244,"journal":{"name":"Proceedings of the 22nd ACM Symposium on Document Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3558100.3563846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a method to perform a downstream task of transformers on generating question-answer pairs (QAPs) from a given article. We first finetune pretrained transformers on QAP datasets. We then use a preprocessing pipeline to select appropriate answers from the article, and feed each answer and the relevant context to the finetuned transformer to generate a candidate QAP. Finally we use a postprocessing pipeline to filter inadequate QAPs. In particular, using pretrained T5 models as transformers and the SQuAD dataset as the finetruning dataset, we obtain a finetuned T5 model that outperforms previous models on standard performance measures over the SQuAD dataset. We then show that our method based on this finetuned model generates a satisfactory number of QAPs with high qualities on the Gaokao-EN dataset assessed by human judges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带预处理和后处理管道的下游变压器问答对生成
我们提出了一种从给定文章生成问答对(qap)的方法来执行变压器的下游任务。我们首先在QAP数据集上微调预训练的变压器。然后,我们使用预处理管道从文章中选择适当的答案,并将每个答案和相关上下文提供给经过微调的转换器,以生成候选QAP。最后,我们使用后处理管道来过滤不适当的qap。特别是,使用预训练的T5模型作为变压器,并使用SQuAD数据集作为微调数据集,我们获得了一个经过微调的T5模型,该模型在SQuAD数据集的标准性能度量上优于先前的模型。然后,我们证明了基于此微调模型的方法在人类评委评估的高考-英语数据集上生成了令人满意的高质量qap。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How did dennis ritchie produce his PhD thesis?: a typographical mystery From print to online newspapers on small displays: a layout generation approach aimed at preserving entry points Binarization of photographed documents image quality, processing time and size assessment Tab this folder of documents: page stream segmentation of business documents Graphical document representation for french newsletters analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1