Diversity-driven selection of exploration strategies in multi-armed bandits

Fabien C. Y. Benureau, Pierre-Yves Oudeyer
{"title":"Diversity-driven selection of exploration strategies in multi-armed bandits","authors":"Fabien C. Y. Benureau, Pierre-Yves Oudeyer","doi":"10.1109/devlrn.2015.7346130","DOIUrl":null,"url":null,"abstract":"We consider a scenario where an agent has multiple available strategies to explore an unknown environment. For each new interaction with the environment, the agent must select which exploration strategy to use. We provide a new strategy-agnostic method that treat the situation as a Multi-Armed Bandits problem where the reward signal is the diversity of effects that each strategy produces. We test the method empirically on a simulated planar robotic arm, and establish that the method is both able discriminate between strategies of dissimilar quality, even when the differences are tenuous, and that the resulting performance is competitive with the best fixed mixture of strategies.","PeriodicalId":164756,"journal":{"name":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/devlrn.2015.7346130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We consider a scenario where an agent has multiple available strategies to explore an unknown environment. For each new interaction with the environment, the agent must select which exploration strategy to use. We provide a new strategy-agnostic method that treat the situation as a Multi-Armed Bandits problem where the reward signal is the diversity of effects that each strategy produces. We test the method empirically on a simulated planar robotic arm, and establish that the method is both able discriminate between strategies of dissimilar quality, even when the differences are tenuous, and that the resulting performance is competitive with the best fixed mixture of strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多武装盗匪的多样性驱动勘探策略选择
我们考虑这样一个场景:智能体有多种可用策略来探索未知环境。对于与环境的每次新交互,智能体必须选择使用哪种探索策略。我们提供了一种新的策略不可知论方法,该方法将情况视为多武装强盗问题,其中奖励信号是每种策略产生的效果的多样性。我们在一个模拟的平面机械臂上对该方法进行了实证测试,并证明该方法既能够区分不同质量的策略,即使差异很小,而且最终的性能与最佳固定策略混合具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sequential organization of movement is critical to the development of reaching: A neural dynamics account Incremental grounded language learning in robot-robot interactions — Examples from spatial language A learning model for essentialist concepts Biological and simulated neuronal networks show similar competence on a visual tracking task A Deep Learning Neural Network for Number Cognition: A bi-cultural study with the iCub
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1