GPU-Enabled High Performance Online Visual Search with High Accuracy

Ali Cevahir, Junji Torii
{"title":"GPU-Enabled High Performance Online Visual Search with High Accuracy","authors":"Ali Cevahir, Junji Torii","doi":"10.1109/ISM.2012.85","DOIUrl":null,"url":null,"abstract":"We propose an online image search engine based on local image features (key points), which runs fully on GPUs. State-of-the-art visual image retrieval techniques are based on bag-of-visual-words (BoV) model, which is an analogy for text-based search. In BoV, each key point is rounded off to the nearest visual word. On the other hand in this work, thanks to the vector computation power of GPUs, we utilize real values of key point descriptors. We match key points in two steps. The idea in the first step is similar to visual word matching in BoV. In the second step, we do matching in key point level. By keeping identities of each key point, closest key points are accurately retrieved in real-time. Image search has different characteristics than textual search. We implement one-to-one key point matching, which is more natural for images. Our experiments reveal 265 times speed up for offline index generation, 104 times speedup for online index search and 20.5 times speedup for online key point matching time, when compared to the CPU implementation. Our proposed key point-matching-based search improves accuracy of BoV by 9.5%.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose an online image search engine based on local image features (key points), which runs fully on GPUs. State-of-the-art visual image retrieval techniques are based on bag-of-visual-words (BoV) model, which is an analogy for text-based search. In BoV, each key point is rounded off to the nearest visual word. On the other hand in this work, thanks to the vector computation power of GPUs, we utilize real values of key point descriptors. We match key points in two steps. The idea in the first step is similar to visual word matching in BoV. In the second step, we do matching in key point level. By keeping identities of each key point, closest key points are accurately retrieved in real-time. Image search has different characteristics than textual search. We implement one-to-one key point matching, which is more natural for images. Our experiments reveal 265 times speed up for offline index generation, 104 times speedup for online index search and 20.5 times speedup for online key point matching time, when compared to the CPU implementation. Our proposed key point-matching-based search improves accuracy of BoV by 9.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
启用gpu的高性能在线视觉搜索与高精度
我们提出了一种基于局部图像特征(关键点)的在线图像搜索引擎,该引擎完全运行在gpu上。目前最先进的视觉图像检索技术是基于视觉词袋(BoV)模型,该模型与基于文本的搜索类似。在BoV中,每个关键点被四舍五入到最近的视觉单词。另一方面,在这项工作中,由于gpu的矢量计算能力,我们利用了关键点描述符的实值。我们分两步匹配关键点。第一步的想法类似于BoV中的视觉单词匹配。第二步,在关键点层面进行匹配。通过保留每个关键点的身份,可以实时准确地检索到最近的关键点。图像搜索与文本搜索具有不同的特点。我们实现了一对一的关键点匹配,这对图像来说更自然。我们的实验表明,与CPU实现相比,离线索引生成的速度提高了265倍,在线索引搜索的速度提高了104倍,在线关键点匹配时间的速度提高了20.5倍。我们提出的基于关键点匹配的搜索将BoV的准确率提高了9.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1