Cache performance of chronological garbage collection

Yuping Ding, Xining Li
{"title":"Cache performance of chronological garbage collection","authors":"Yuping Ding, Xining Li","doi":"10.1109/CCECE.1998.682534","DOIUrl":null,"url":null,"abstract":"The paper presents the cache performance analysis of the Chronological Garbage Collection algorithm used in the LVM system. The LVM is a new Logic Virtual Machine for Prolog. It adopts one stack policy for all dynamic memory requirements and cooperates with an efficient garbage collection algorithm, Chronological Garbage Collection to recuperate space, not as deliberate garbage collection operation but as a natural activity of the LVM engine to gather useful objects. This algorithm takes advantages of the traditional copying, mark-compact, generational, and incremental garbage collection schemes. In order to determine the improvement of cache performance under our garbage collection algorithm, we developed an emulator to do the trace driven cache simulation. Direct mapped cache and set-associative cache with different cache sizes, block sizes and set associativities are simulated and measured. The objectives of this simulation are to verify and validate our experimental results, and to find important factors which influence the performance of the CGC algorithm.","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.682534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper presents the cache performance analysis of the Chronological Garbage Collection algorithm used in the LVM system. The LVM is a new Logic Virtual Machine for Prolog. It adopts one stack policy for all dynamic memory requirements and cooperates with an efficient garbage collection algorithm, Chronological Garbage Collection to recuperate space, not as deliberate garbage collection operation but as a natural activity of the LVM engine to gather useful objects. This algorithm takes advantages of the traditional copying, mark-compact, generational, and incremental garbage collection schemes. In order to determine the improvement of cache performance under our garbage collection algorithm, we developed an emulator to do the trace driven cache simulation. Direct mapped cache and set-associative cache with different cache sizes, block sizes and set associativities are simulated and measured. The objectives of this simulation are to verify and validate our experimental results, and to find important factors which influence the performance of the CGC algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
按时间顺序的垃圾收集的缓存性能
本文对LVM系统中使用的时序垃圾收集算法的缓存性能进行了分析。LVM是Prolog的一种新型逻辑虚拟机。它对所有动态内存需求采用一个堆栈策略,并配合高效的垃圾收集算法——时间顺序垃圾收集——来回收空间,而不是作为故意的垃圾收集操作,而是作为LVM引擎收集有用对象的自然活动。该算法利用了传统的复制、标记压缩、分代和增量垃圾收集方案的优点。为了确定垃圾收集算法对缓存性能的改善,我们开发了一个仿真器来进行跟踪驱动的缓存仿真。模拟和测量了不同缓存大小、块大小和集合关联度的直接映射缓存和集合关联缓存。本次仿真的目的是验证和验证我们的实验结果,并找出影响CGC算法性能的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The use of ISDN signaling for real-time applications at homes and small businesses Multifractal analysis of DNA Multimedia courseware delivery over the Internet The VideoWriter: towards active paper for a natural user interface A performance based analysis of a robust flux controller for an induction motor drive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1