A Data-Reuse Approach for an Optimized LMS Algorithm

Alexandru-George Rusu, Laura-Maria Dogariu, S. Ciochină, C. Paleologu
{"title":"A Data-Reuse Approach for an Optimized LMS Algorithm","authors":"Alexandru-George Rusu, Laura-Maria Dogariu, S. Ciochină, C. Paleologu","doi":"10.1109/sped53181.2021.9587371","DOIUrl":null,"url":null,"abstract":"The least-mean-square (LMS) type algorithms are widely spread in signal processing, especially in the system identification context. The classic LMS algorithm has major drawbacks due to the fixed step-size that limits the overall performance. The optimized LMS (LMSO) algorithm followed an optimization criterion and introduced a variable step-size so that it overcomes the drawbacks of the LMS algorithm. Some scenarios where the unknown system changes have highlighted the need for the LMSO algorithm to improve how fast it models the new system. In this paper, we apply the data-reuse approach for the LMSO algorithm aiming to increase the convergence rate. The simulations outline the performance improvement for the data-reuse method in combination with the LMSO algorithm.","PeriodicalId":193702,"journal":{"name":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sped53181.2021.9587371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The least-mean-square (LMS) type algorithms are widely spread in signal processing, especially in the system identification context. The classic LMS algorithm has major drawbacks due to the fixed step-size that limits the overall performance. The optimized LMS (LMSO) algorithm followed an optimization criterion and introduced a variable step-size so that it overcomes the drawbacks of the LMS algorithm. Some scenarios where the unknown system changes have highlighted the need for the LMSO algorithm to improve how fast it models the new system. In this paper, we apply the data-reuse approach for the LMSO algorithm aiming to increase the convergence rate. The simulations outline the performance improvement for the data-reuse method in combination with the LMSO algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化LMS算法的数据重用方法
最小均方(LMS)算法在信号处理中得到了广泛的应用,特别是在系统辨识领域。由于固定的步长限制了整体性能,经典的LMS算法有很大的缺点。优化后的LMS (LMSO)算法遵循优化准则,引入可变步长,克服了LMS算法的不足。在一些未知系统变化的情况下,LMSO算法需要提高其对新系统建模的速度。本文将数据重用方法应用于LMSO算法,以提高算法的收敛速度。仿真结果表明,数据重用方法与LMSO算法相结合,可以提高系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Segmentation of Texts based on Stylistic Features Romanian printed language, statistical independence and the type II statistical error Comparison in Suprasegmental Characteristics between Typical and Dysarthric Talkers at Varying Severity Levels Neural Networks for Automatic Environmental Sound Recognition Speaker Verification Experiments using Identity Vectors, on a Romanian Speakers Corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1